

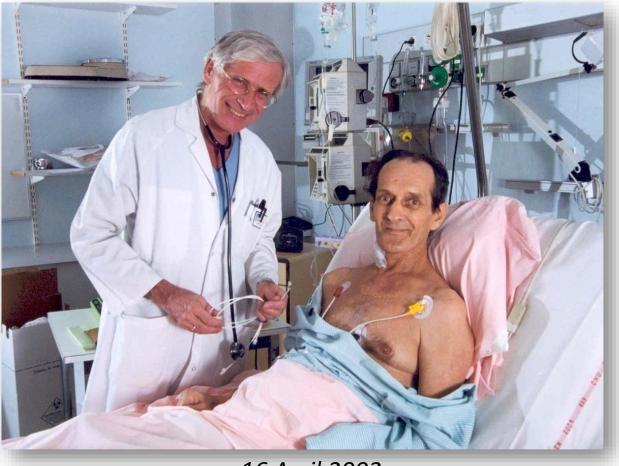
With simplication and low risk patient TAVI is the first option to treat severe aortic stenosis ?

Dr Hakim Benamer for ICPS Team

ICPS Massy, France

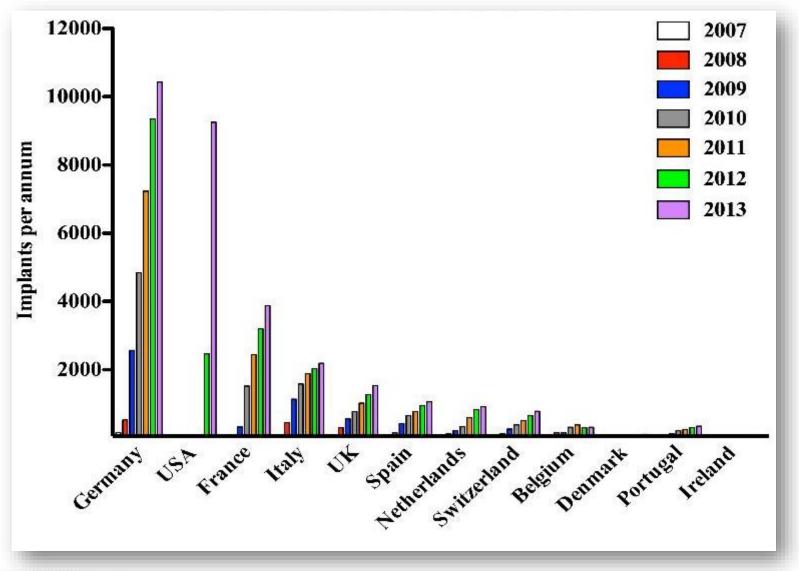
Conflict of interest

Proctoring for Edwards



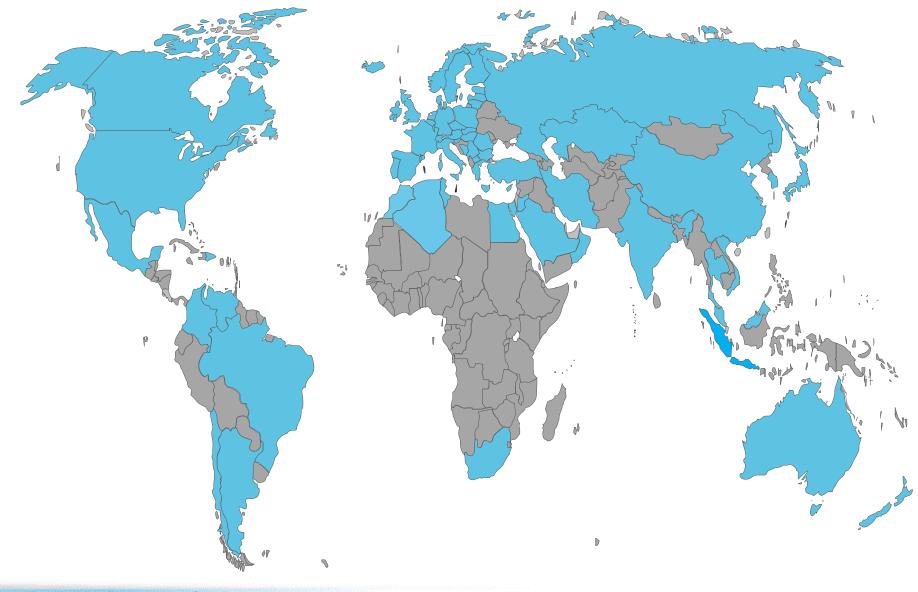
TAVI for all patient?

What is it clear today


17 years ago: First case at Rouen in FRANCE

Compassionate: 76 years old, cardiogenic shock, surgical recusal

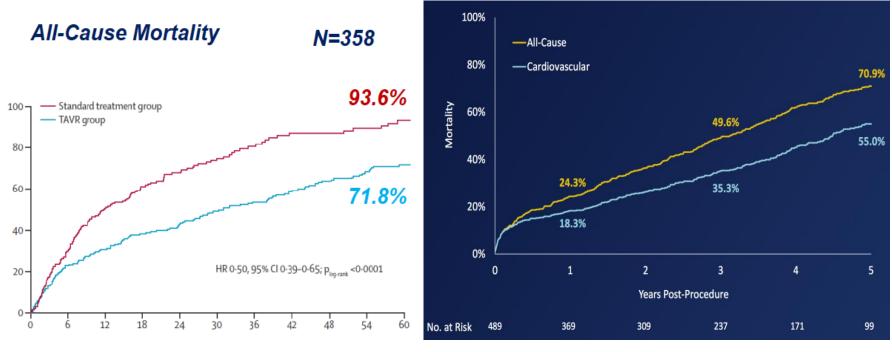
16 Avril 2002


Fast progression in the World

Courtesy of Darren Mylotte

www.icps.com.fr

> 500 000 case in > 80 countries


INOPERABLE patients: TAVI vs médical TTT

PARTNER 1B

Kapadia et al. Lancet 2015

Corevalve extreme risk

Petrossian et al ACC 2018

TIME (MONTHS)

HIGH SURGICAL RISK patient: TAVI vs Surgery

PARTNER 1A: 5-Year Follow-up

Mack MJ et al. Lancet 2015

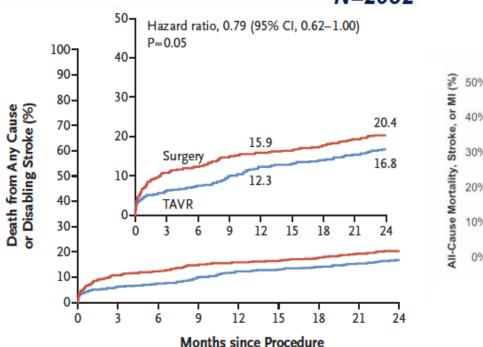
All-cause Mortality

CoreValve High-Risk: 3-Year Follow-up

Deeb M et al. J Am Coll Cardiol 2016

All-cause Mortality or Stroke

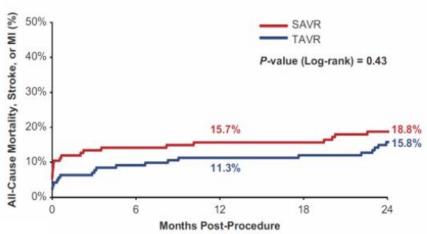
100-TAVR group N=699 N=797 - SAVR group 90-67.8% 80-70 All-Cause Mortality or Stroke (%) Log Rank p = 0.006HR 1-04, 95% CI 0-86-1-24; p=0-76 70-60-Δ9.4 - TAVR -- SAVR 60-50 46.7 62.4% 50-40-40-37.3 30-26.430-26.8 20. 20-18.2 10 10 0 0-24 12 36 12 48 60 36 24 0 TIME (MONTHS) TIME (MONTHS)


INTERMEDIATE surgical risk patient: TAVI vs Surgery

PARTNER 2A: 2-Year Follow-Up

Leon MB et al. N Engl J Med 2016

All-cause Mortality or Stroke



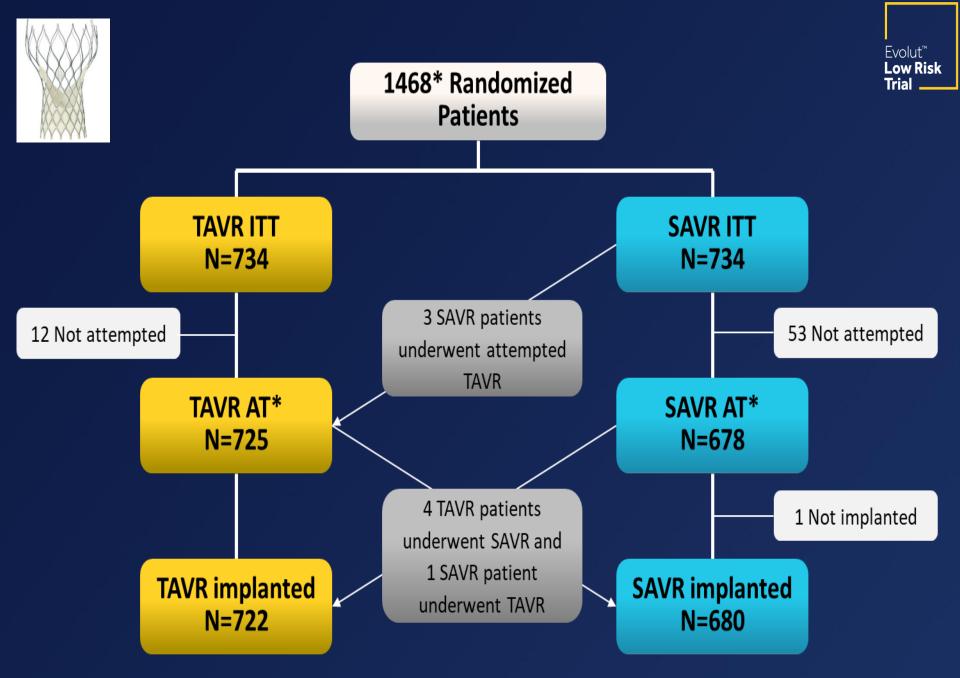
NOTION: 2-Year Follow-Up

Søndergaard L et al. Circ Cardiovasc Interv 2016

All-cause Mortality, Stroke, or MI

N=280

TAVI for all patient?


What is it new today?

() II	NSTITUT CARDIOVASCULA	IRE PARIS SUD			
LOW	RISK PATIEN				
	PARTNER 3 NCT02675114	CoreValve	NOTION-2 NCT02825134		
	Low surgi	cal risk as assessed by Hea	art Team		
	STS < 4%	STS < 3%	STS < 4%		
		Sample Size			
	N=1,228	N=1,200	N=992		
	1:1 Randomization TAVI Vs. SAVR				
	SAPIEN 3	Evolut R	Any CE-approved device		
		Primary Endpoint			
	All-cause mortality, Any strokes, or re-hospitalization at 1 year	All-cause mortality, any stroke, life-threatening bleeding, major vascular complications, or AKI at 30-day	All-cause mortality, myocardial infarction, or any stroke at 1-year		

ORIGINAL ARTICLE

Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients

Jeffrey J. Popma, M.D., G. Michael Deeb, M.D., Steven J. Yakubov, M.D.,
Mubashir Mumtaz, M.D., Hemal Gada, M.D., Daniel O'Hair, M.D., Tanvir Bajwa, M.D.,
John C. Heiser, M.D., William Merhi, D.O., Neal S. Kleiman, M.D., Judah Askew, M.D.,
Paul Sorajja, M.D., Joshua Rovin, M.D., Stanley J. Chetcuti, M.D.,
David H. Adams, M.D., Paul S. Teirstein, M.D., George L. Zorn III, M.D.,
John K. Forrest, M.D., Didier Tchétché, M.D., Jon Resar, M.D., Antony Walton, M.D.,
Nicolo Piazza, M.D., Ph.D., Basel Ramlawi, M.D., Newell Robinson, M.D.,
George Petrossian, M.D., Thomas G. Gleason, M.D., Jae K. Oh, M.D.,
Michael J. Boulware, Ph.D., Hongyan Qiao, Ph.D., Andrew S. Mugglin, Ph.D.,
and Michael J. Reardon, M.D., for the Evolut Low Risk Trial Investigators*

Popma et al. NEJM 2019

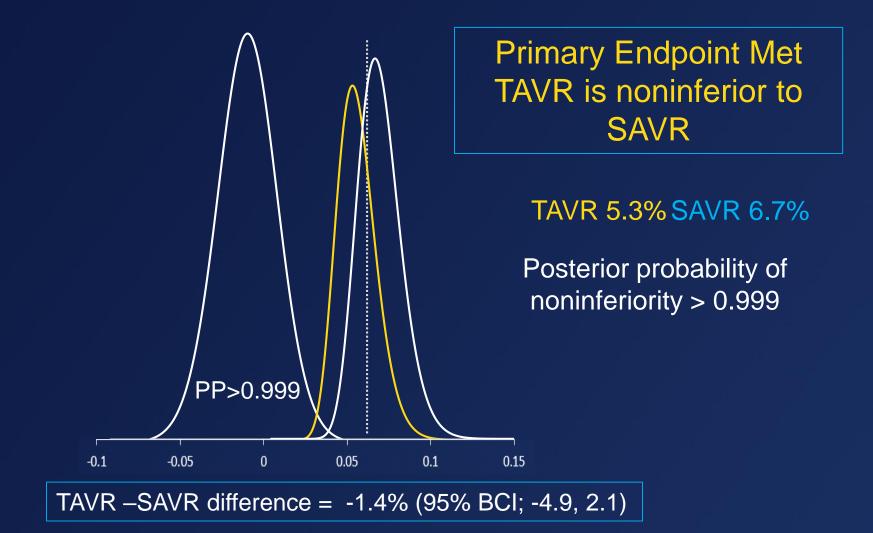
Study Timeline and Valves Studied

Baseline Characteristics

Mean \pm SD or %	TAVR (N=725)	SAVR (N=678)
Age, years	74.1 ± 5.8	73.6 ± 5.9
Female sex	36.0	33.8
Body surface area, m ²	2.0 ± 0.2	2.0 ± 0.2
STS PROM, %	1.9 ± 0.7	1.9 ± 0.7
NYHA Class III or IV	25.1	28.5
Hypertension	84.8	82.6
Chronic lung disease (COPD)	15.0	18.0
Cerebrovascular disease	10.2	11.8
Peripheral arterial disease	7.5	8.3

There are no significant differences between groups.

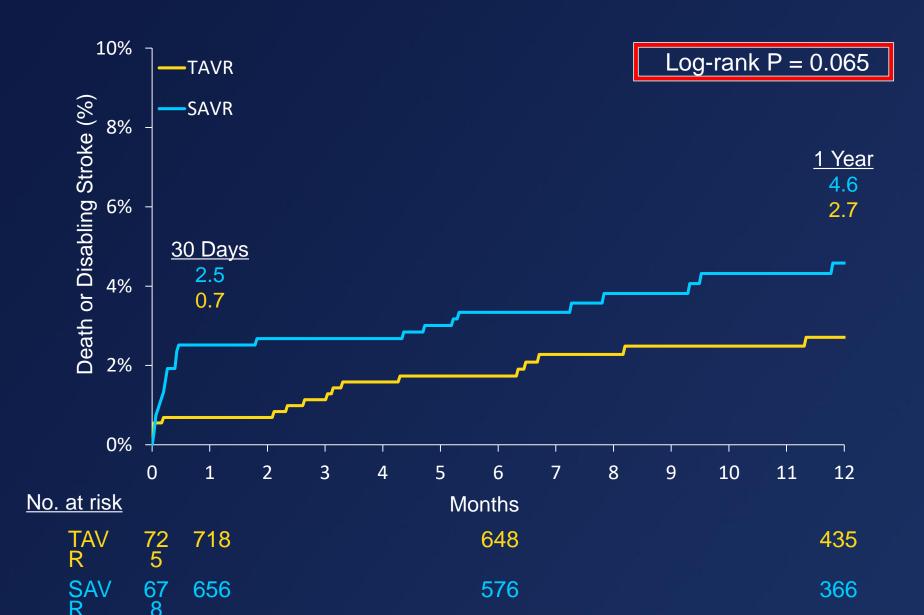
Baseline Cardiac Risk Factors

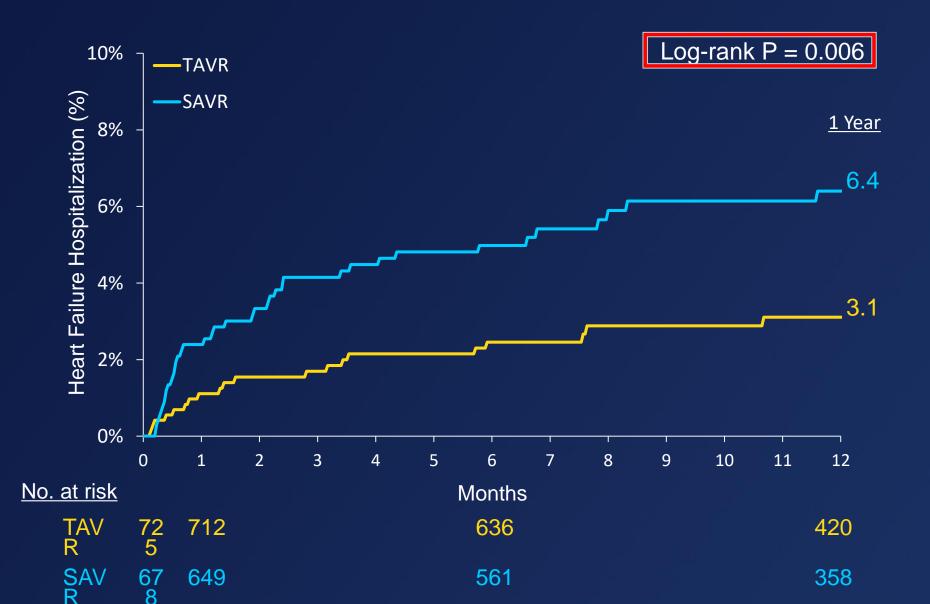

Mean \pm SD or %	TAVR (N=725)	SAVR (N=678)
SYNTAX Score	1.9 ± 3.7	2.1 ± 3.9
Permanent pacemaker, CRT or ICD	3.2	3.8
Prior CABG	2.5	2.1
Previous PCI	14.2	12.8
Previous myocardial infarction	6.6	4.9
Atrial fibrillation/flutter	15.4	14.5
Aortic valve gradient, mm Hg	47.0 ± 12.1	46.6 ± 12.2
Aortic Valve area, cm ²	0.8 ± 0.2	0.8 ± 0.2
Left ventricular ejection fraction,	61.7 ± 7.9	61.9 ± 7.7

There are no significant differences between groups.

TAVR Procedural Data

%	TAVR (N=724)
General anesthesia	56.9
lliofemoral access	99.0
Embolic protection device used	1.2
Pre-TAVR balloon dilation	34.9
Post-TAVR balloon dilation	31.3
More than 1 valve used	1.2
Partial or complete repositioning of the valve (Evolut/PRO only)	37.3
Staged or concomitant PCI performed	6.9

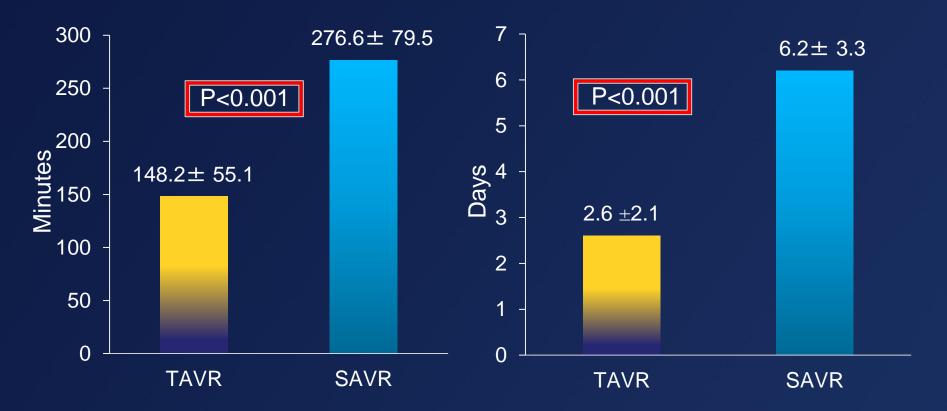

Primary Endpoint All-Cause Mortality or Disabling Stroke at 2 Years


Evolut[™] Low Risk Trial

K-M All-Cause Mortality or Disabling Stroke at 1 Year

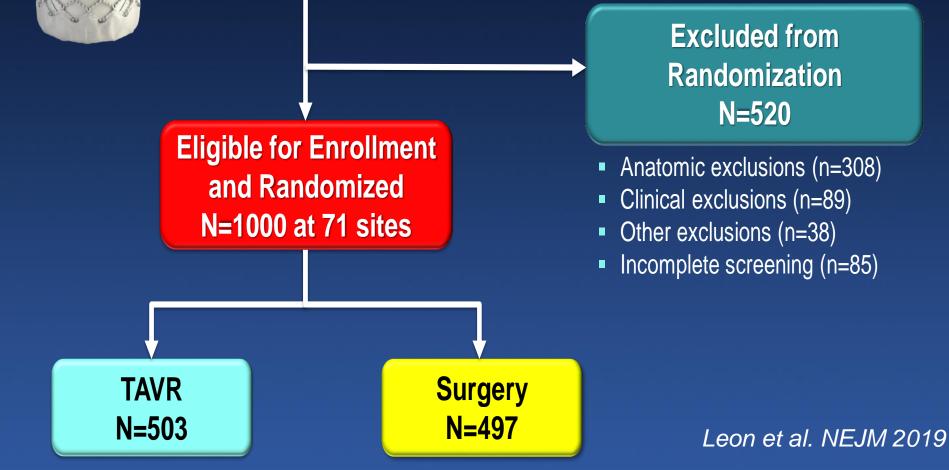
Evolut[™] Low Risk Trial

K-M Heart Failure Hospitalization at 1 Year



Evolut[™] Low Risk Trial

Procedural Time and Length of Stay


Time in Cath Lab or OR

Hospital Length of Stay

Study Flow and Follow-Up

1520 patients with severe symptomatic AS at low surgical risk consented between March 25, 2016 and October 26, 2017 at 71 sites in the US, Canada, Japan, ANZ

VINSTIT Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients

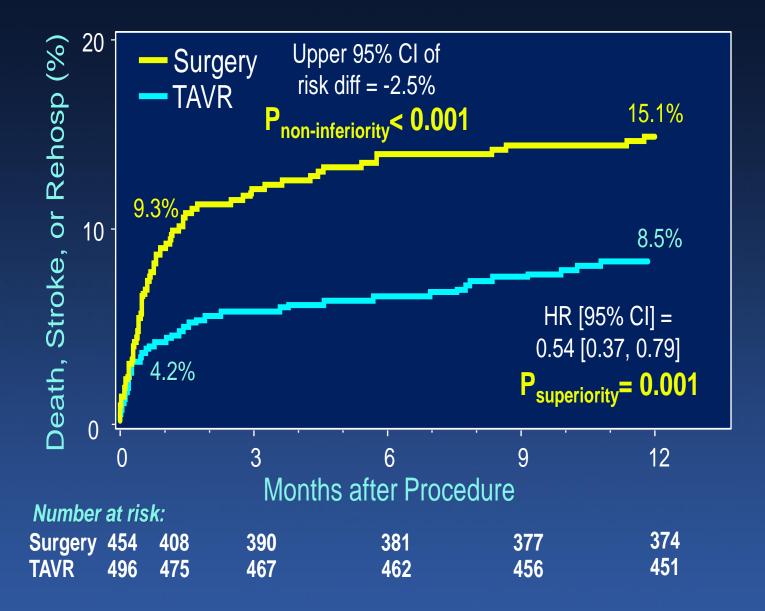
M.J. Mack, M.B. Leon, V.H. Thourani, R. Makkar, S.K. Kodali, M. Russo,
S.R. Kapadia, S.C. Malaisrie, D.J. Cohen, P. Pibarot, J. Leipsic, R.T. Hahn,
P. Blanke, M.R. Williams, J.M. McCabe, D.L. Brown, V. Babaliaros, S. Goldman,
W.Y. Szeto, P. Genereux, A. Pershad, S.J. Pocock, M.C. Alu, J.G. Webb,
and C.R. Smith, for the PARTNER 3 Investigators*

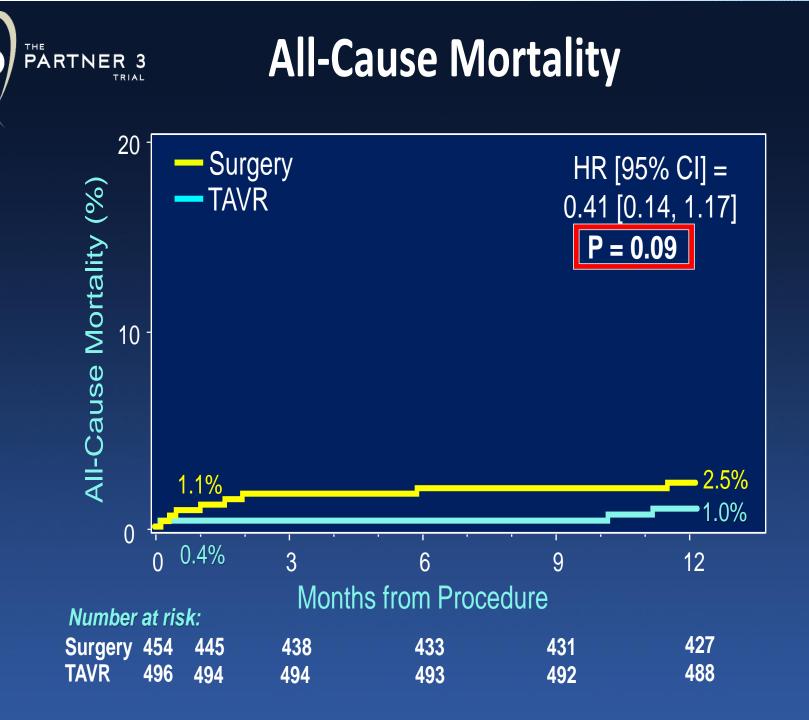
Characteristic	TAVR (N=496)	Surgery (N=454)
Age — yr	73.3±5.8	73.6±6.1
Male sex — no. (%)	335 (67.5)	323 (71.1)
Nonwhite race or ethnic group — no. (%) †	38 (7.7)	45 (9.9)
Body-mass index <u></u>	30.7±5.5	30.3±5.1
STS score∫	1.9±0.7	1.9±0.6
EuroSCORE II score	1.5±1.2	1.5±0.9

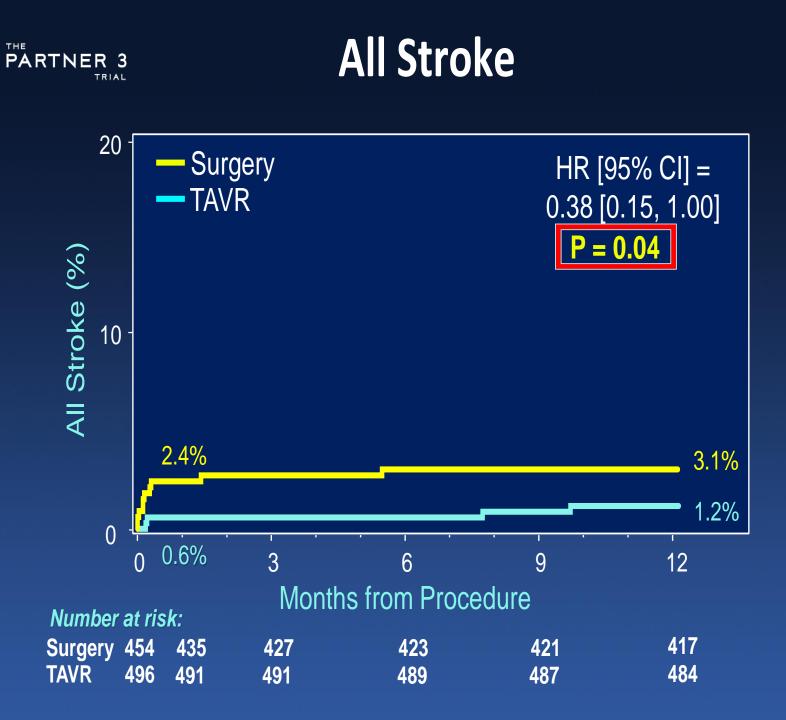
NEJM 2019

VINSTIT Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients

M.J. Mack, M.B. Leon, V.H. Thourani, R. Makkar, S.K. Kodali, M. Russo,
S.R. Kapadia, S.C. Malaisrie, D.J. Cohen, P. Pibarot, J. Leipsic, R.T. Hahn,
P. Blanke, M.R. Williams, J.M. McCabe, D.L. Brown, V. Babaliaros, S. Goldman,
W.Y. Szeto, P. Genereux, A. Pershad, S.J. Pocock, M.C. Alu, J.G. Webb,
and C.R. Smith, for the PARTNER 3 Investigators*

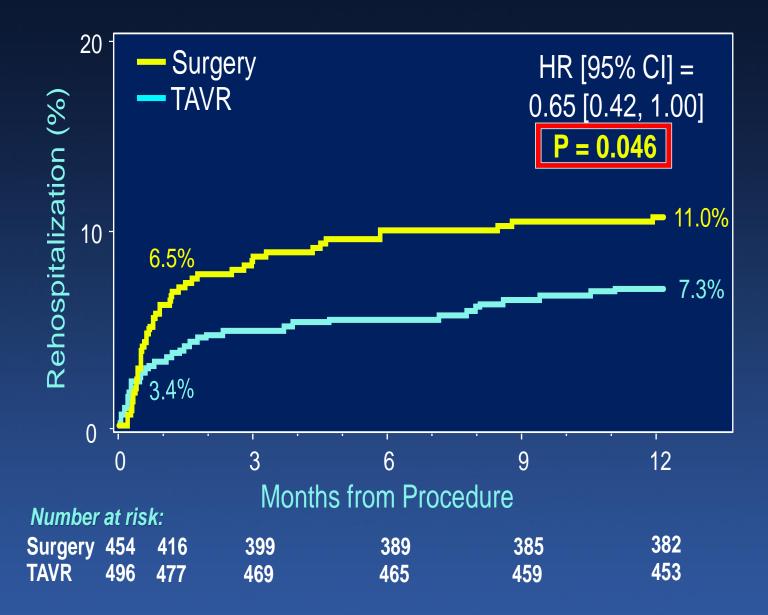

Table 1. Characteristics of the Patients at Baseline.*					
Characteristic	TAVR (N=496)	Surgery (N=454)			
Pulmonary hypertension — no./total no. (%)	23/495 (4.6)	24/454 (5.3)			
Aortic-valve area — cm ²	0.8±0.2	0.8±0.2			
Aortic-valve gradient — mm Hg	49.4±12.8	48.3±11.8			
Left ventricular ejection fraction — %	65.7±9.0	66.2±8.6			
Moderate or severe regurgitation — no./total no. (%)					
Aortic	19/484 (3.9)	11/446 (2.5)			
Mitral	6/477 (1.3)	14/437 (3.2)			
Tricuspid	8/473 (1.7)	10/430 (2.3)			
Systolic annular perimeter on CT — mm	78.1±6.9	78.6±7.2			
Systolic annular area on CT — mm ²	473.5±83.3	479.6±87.6			


NEJM 2019


Primary Endpoint

PARTNER 3

TRIAL



Rehospitalization

PARTNER 3

TRIAL

VINSTIT Transcatheter Aortic-Valve Replacement with a

Subgroup	No. of Patients	TAVR	Sugar	Diff	ference (95% CI)	P Value for Interaction
Subgroup	Patients		Surgery			Interaction
		-	s/total no. (%)	p	ercentage points	
Overall	950	42/496 (8.5)	68/454 (15.1)		-6.6 (-10.8 to -2.5)	
Age						0.21
-74	516	29/273 (10.6)	36/243 (14.9)		-4.3 (-10.1 to 1.5)	
>74 vr	434	13/223 (5.8)	32/211 (15.3)		-9.5 (-15.3 to -3.7)	
Sex						0.27
Female	292	13/161 (8.1)	24/131 (18.5)		-10.4 (-18.3 to -2.5)	
Male	658	29/335 (8.7)	44/323 (13.8)		-5.1 (-9.9 to -0.3)	
STS-PROM score						0.98
≤1.8	464	21/232 (9.1)	36/232 (15.7)		-6.7 (-12.6 to -0.7)	
>1.8	486	21/264 (8.0)	32/222 (14.5)		-6.5 (-12.2 to -0.8)	
Left ventricular ejection fraction						0.48
≤65	384	20/208 (9.6)	30/176 (17.2)		-7.6 (-14.5 to -0.7)	
>65	524	21/264 (8.0)	32/260 (12.4)		-4.4 (-9.6 to 0.7)	
NYHA class						0.54
l or ll	687	23/341 (6.8)	50/346 (14.5)		-7.8 (-12.4 to -3.2)	
III or IV	263	19/155 (12.3)	18/108 (16.9)		-4.7 (-13.5 to 4.1)	
Atrial fibrillation						0.67
No	786	33/418 (7.9)	51/368 (14.0)		-6.1 (-10.5 to -1.7)	
Yes	163	9/78 (11.6)	17/85 (20.3)		-8.7 (-19.9 to 2.5)	
KCCQ overall summary score						0.27
≤70	407	23/219 (10.5)	37/188 (19.9)		-9.4 (-16.5 to -2.4)	
>70	536	18/275 (6.5)	29/261 (11.2)		-4.6 (-9.2 to 0.2)	
				-20	0 20	
				4	>	
				TAVR Better	Surgery Better	

Figure 2. Subgroup Analyses of the Primary Composite End Point of Death from Any Cause, Stroke, or Rehospitalization.

All percentages are Kaplan–Meier estimates. Society of Thoracic Surgeons Predicted Risk of Mortality (STS-PROM) scores range from 0 to 100%, with higher scores indicating a greater risk of death within 30 days after the procedure. Kansas City Cardiomyopathy Questionnaire (KCCQ) overall summary scores range from 0 to 100, with higher scores indicating fewer physical limitations and a greater feeling of well-being. NYHA denotes New York Heart Association.

INEJIVI ZO19

VINSTIT Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients

M.J. Mack, M.B. Leon, V.H. Thourani, R. Makkar, S.K. Kodali, M. Russo,

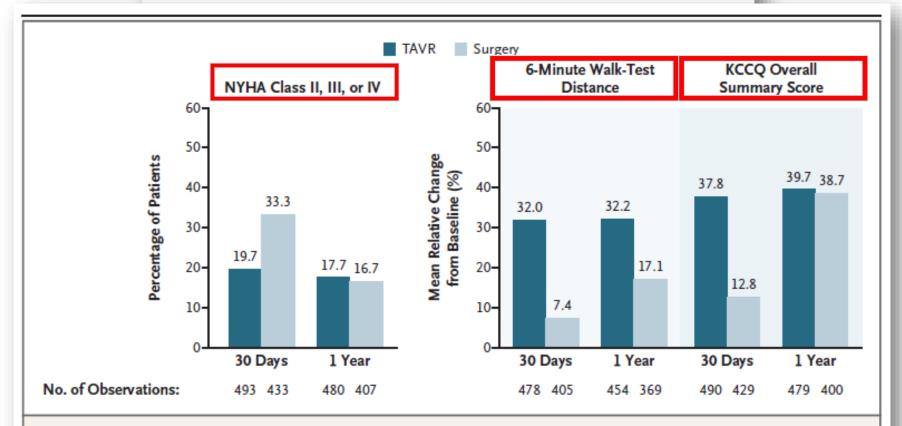
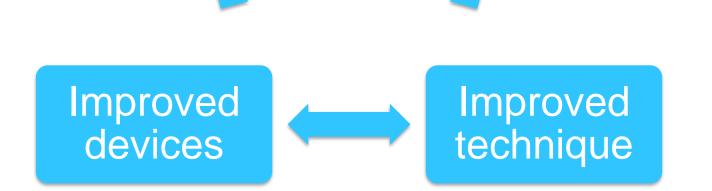
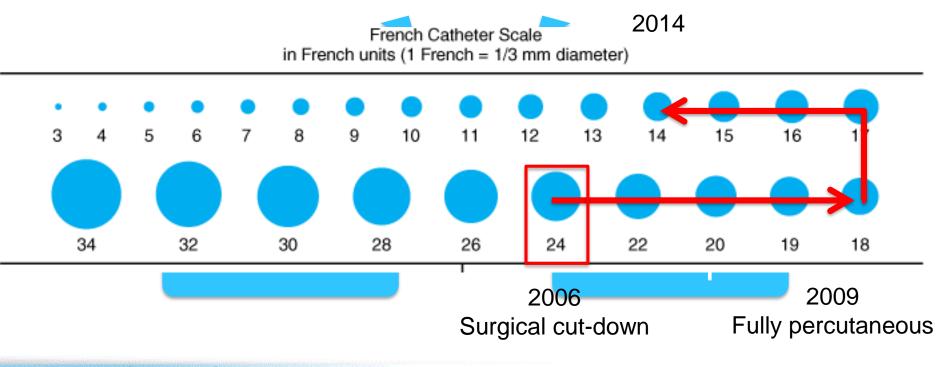


Figure 3. Functional Status and Quality of Life at 30 Days and 1 Year.


NYHA class and 6-minute walk-test distance are measures of functional status, and the KCCQ overall summary score is a measure of quality of life.

NEJM 2019

Improvement of our results ✓ Simplification

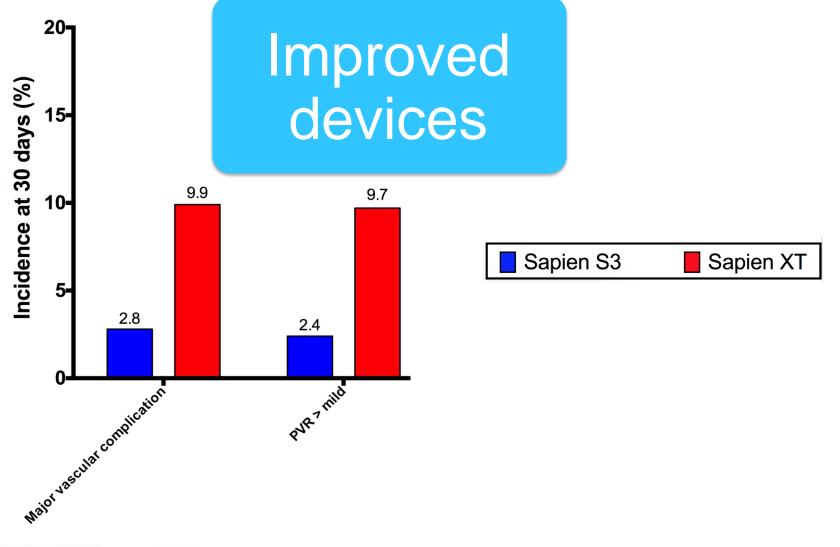

Simplified TAVI: History

Simplified TAVI

Simplified TAVI: History

Simplified TAVI: History

Improved devices



Sapien

Sapien XT

Sapien 3

Simplified TAVI: History

www.icps.com.fr

Sawaya, Spaziano, Lefèvre et al. WJC, 2016

Simplified TAVI: History

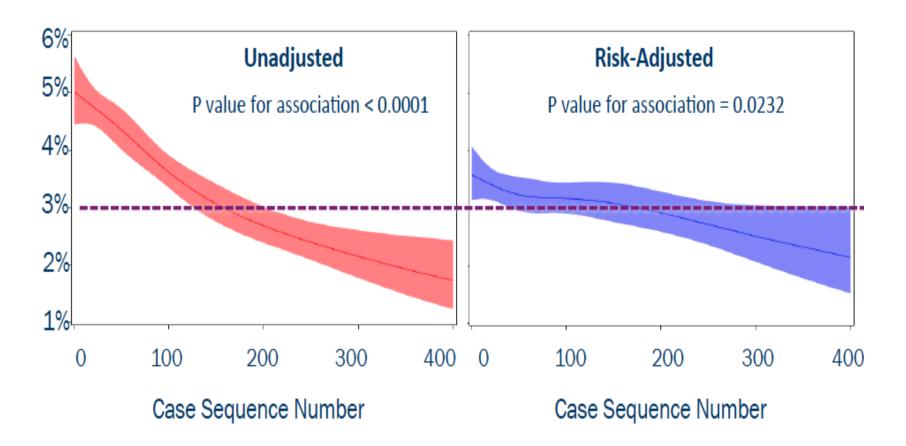
Improved devices

Corevalve

Evolute R

- ✓ Recapturable,
 - repositionable
- ✓ More controlled deployment
- ✓ Less PVL
- ✓ Less AVB

Simplified TAVI: History


Simplified TAVI

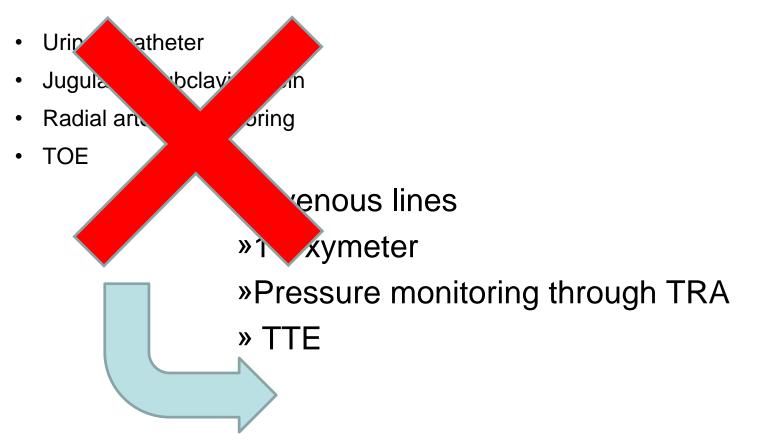
TVT registry (2012-2015, 42998 Pts)

30-day mortality and learning curve

www.icps.com.fr

Carroll et al. ACC 2016

First transapical case in Massy in the hybrid room 2009

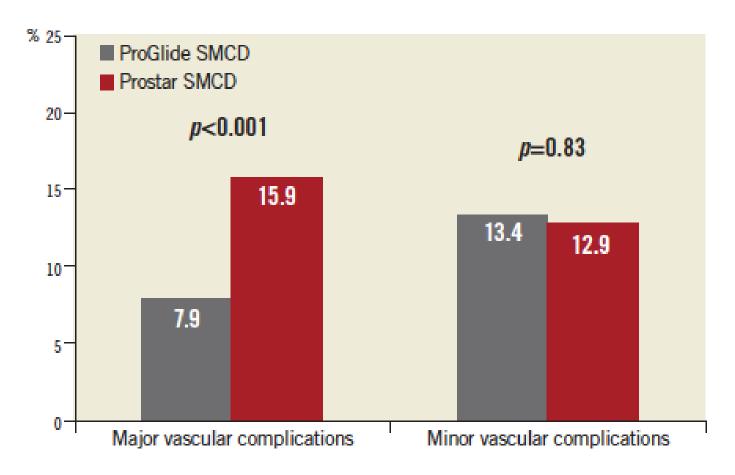

General anesthesia

- Hemodynamic intability
- Late s. <u>v</u> Intification
- Pulmona ection
- Diffic extuba

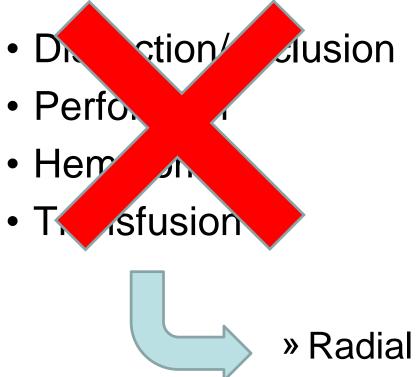
» Conscious sedation April 2009

» 0% General anesthesia.

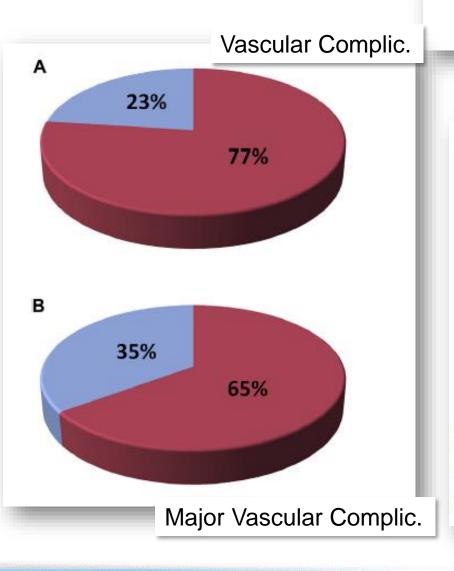
Too much monitoring


Main access vascular complications

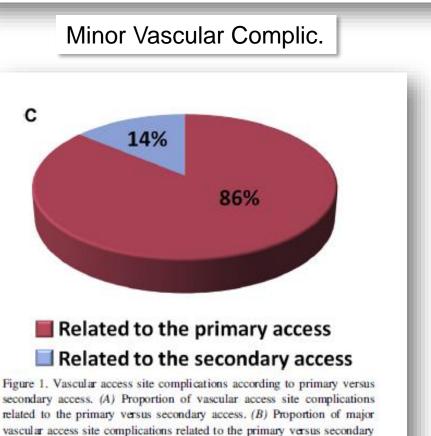
- Dissection/occlusion
- Perforation, rupture
- Hematoma
- Transfusion


- » Better pre-procedural screening
- » Peripheral interventions toolbox
- » 2 proglides 2015

Proglide vs Prostar



Mehilli et al. Eurointervention 2016;12:1298-1304


Secondary access vascular complications

» Radial for second access

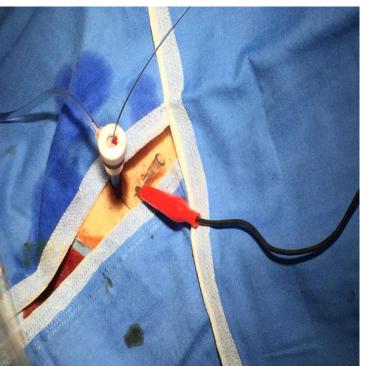
Impact of the Use of Transradial Versus Transfemoral Approach as Secondary Access in Transcatheter Aortic Valve Implantation Procedures

access. (C) Proportion of minor vascular access site complications related to

the primary versus secondary access.

R Allende *et al*. Am J Cardiol 2014;114:1729-1734

Predilatation


• Higher f stroke ?

No predilatation

Temporary Pace-Maker

- Perrdial
 sion/ tamponade
- Infect
- Hem?'
- Transion

Acute Mey Injury

- » Screening 1-2 weeks before
- » Patient preparation
- » Contrast media/saline (80/20%)
- » Renal guard (clairance < 40)
- » Optimal view defined by MSCT

Complications since 2006

Rare complications

- Ann rup⁺
- LV Pe
- Coron
 Usions
- PVI 1
- » MSCT, MSCT, MSCT
- » S3, Evolute R
- » Dedicated wire
- » Coronary protection

Complications since 2006

DAPT pre and post

- Acc sit simplications
- Bleed
- Herring voke
 - **DAPT** post only 1 month
 - » DAPT 3-6 months in case of stent
 - No DAPT in patient on anticoagulant (anticoag. and plavix 3-6 mths post stenting)

Improvement of our results √ Simplification √ Remaining questions

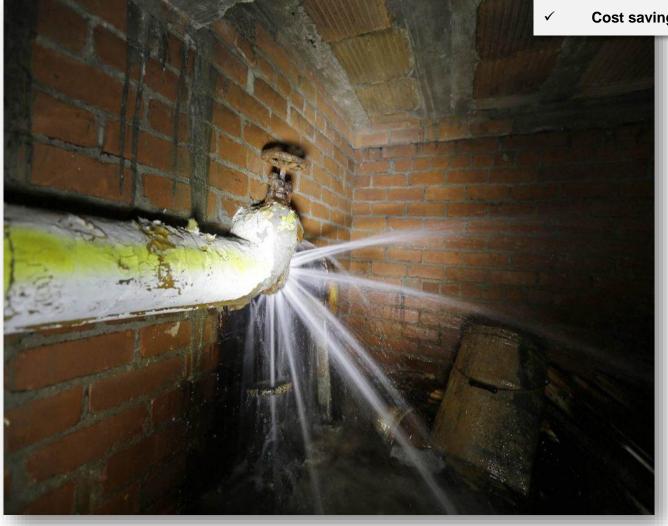
Remaining questions ?

- ✓ Paravalvular leak
- ✓ Durability
- ✓ Bicuspid aortic stenosis
- ✓ Pace maker placement
- ✓ Patient confort
- ✓ Cost saving

Paravalvular leak >2/4

PARAVALVULAR LEAK

Durability \checkmark

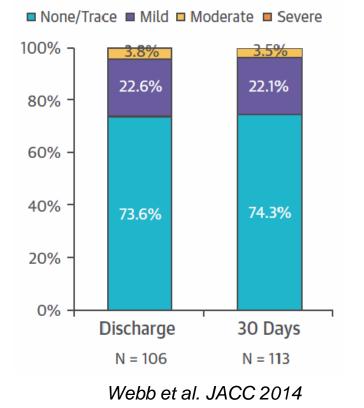

 \checkmark

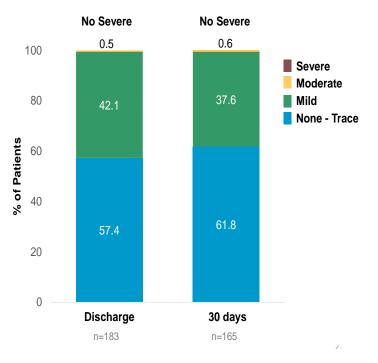
 \checkmark

 \checkmark

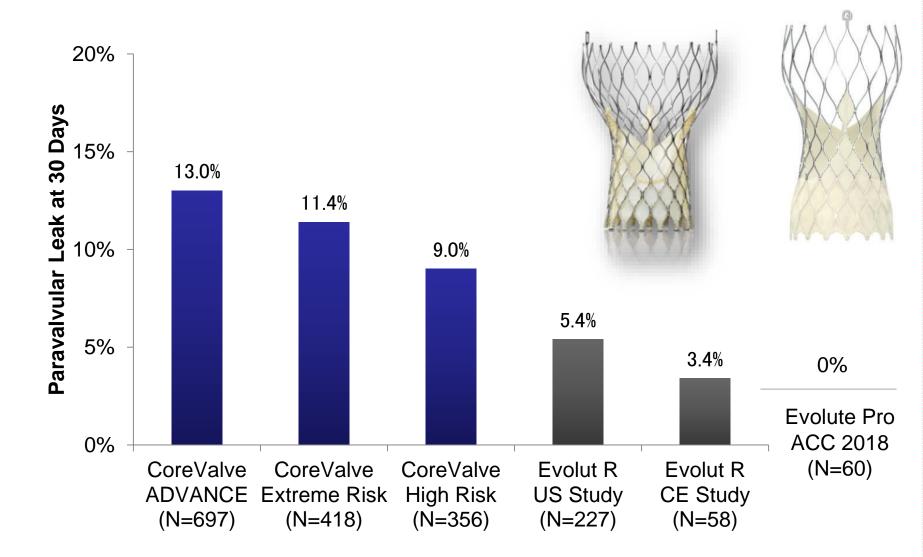
 \checkmark

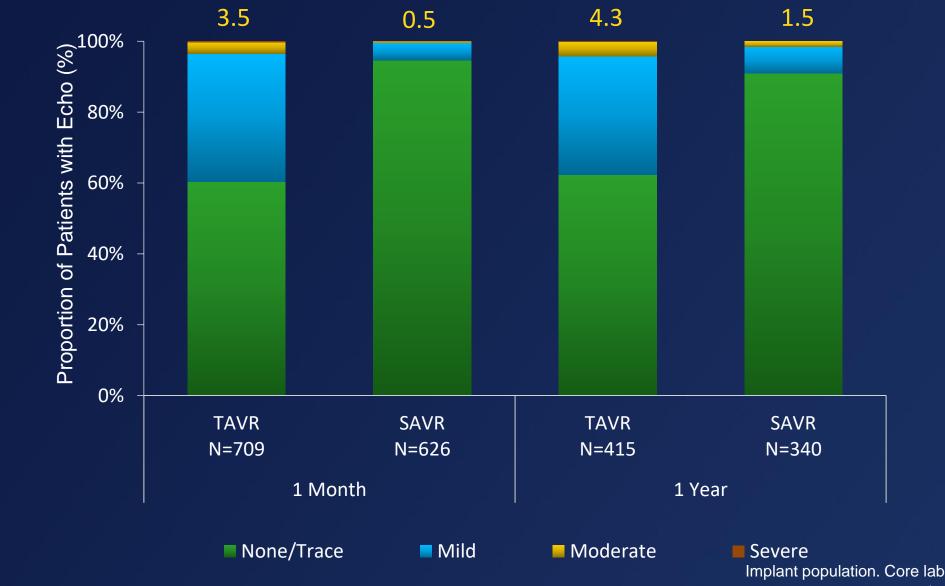
- Bicuspid aortic stenosis
- Pacemaker placement
 - Patient confort
- **Cost saving**


Paravalvular leak >2/4



SAPIEN 3 n=160, age 83.6, STS 7.5


CENTERA N=2003, age 83, STS 6.1


Tchetche et al. EuroPCR 2017

Paravalvular leak >2/4

Total Aortic Valve Regurgitation

LOW RISK

assessments

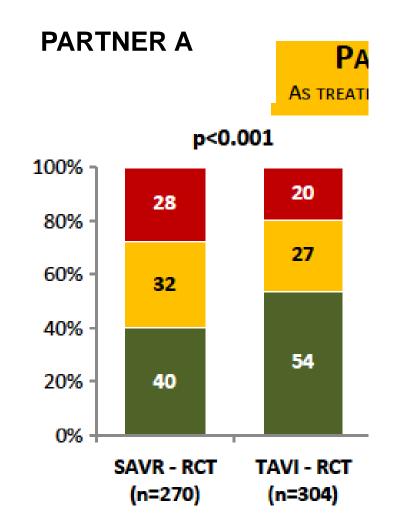
Durability

- Paravalvular leak
- DURABILITY

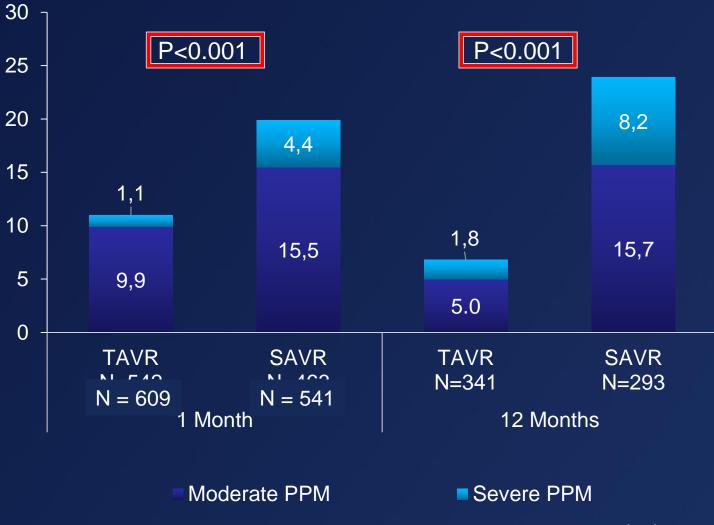
 \checkmark

 \checkmark

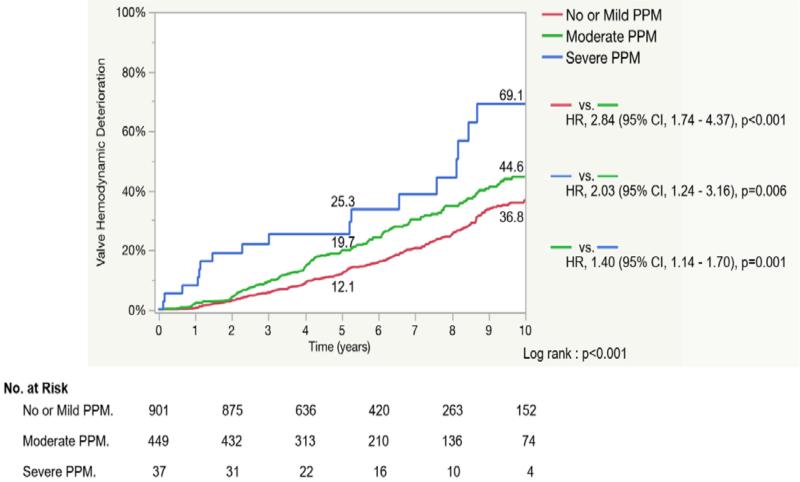
 \checkmark


 \checkmark

 \checkmark


- Bicuspid aortic stenosis
- Pacemaker placement
- ✓ Patient confort
 - Cost saving

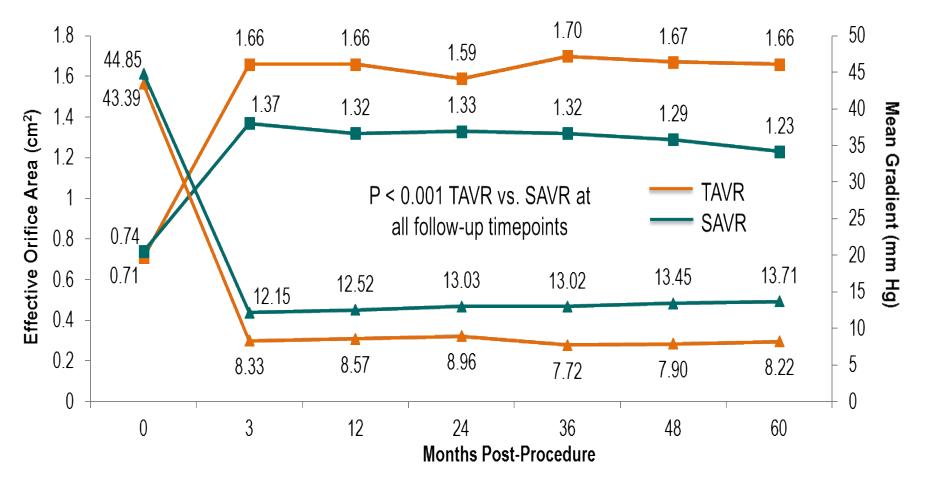
Mismatch



Prosthesis-Patient Mismatch

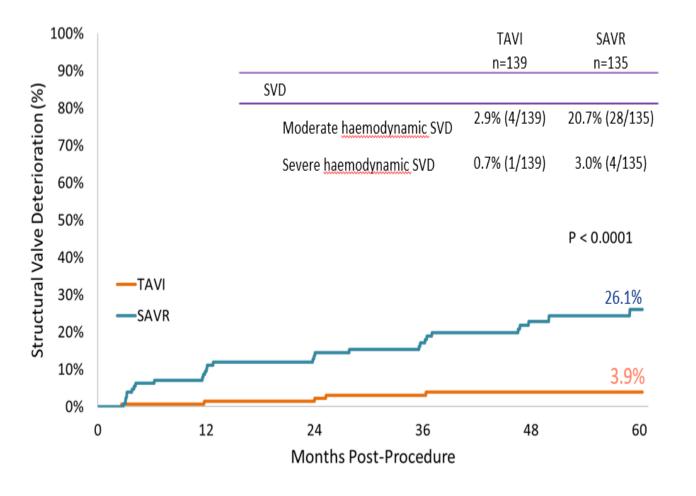
Implant population. Core lab assessments.

Mismatch (Quebec registry) Hemodynamic deterioration


www.icps.com.fr

Salaun et al. Circulation 2018

Notion Trial

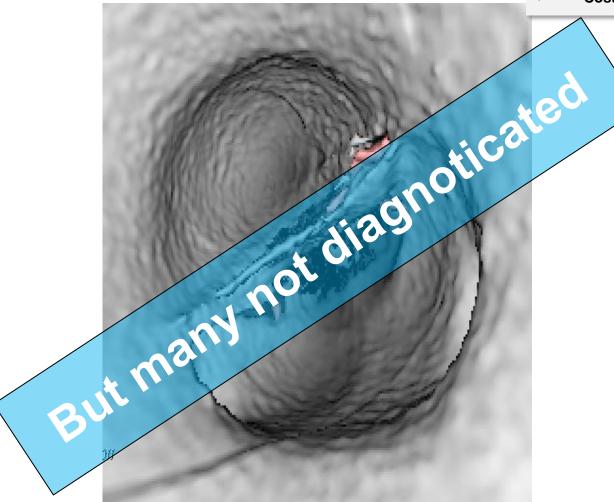

Aortic Valve Performance

Thyregod et al. ACC 2018

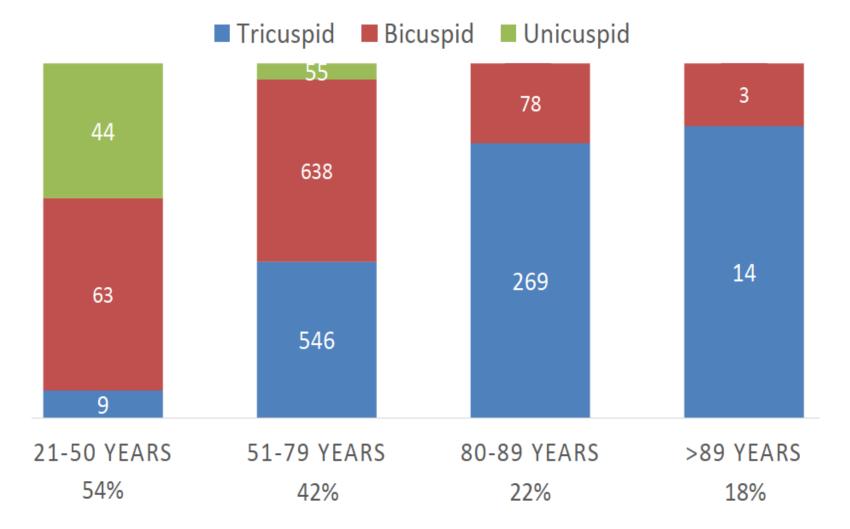
www.icps.com.fr

Notion Trial Durability

www.icps.com.fr


Sondergaard et al. EuroPCR 2017

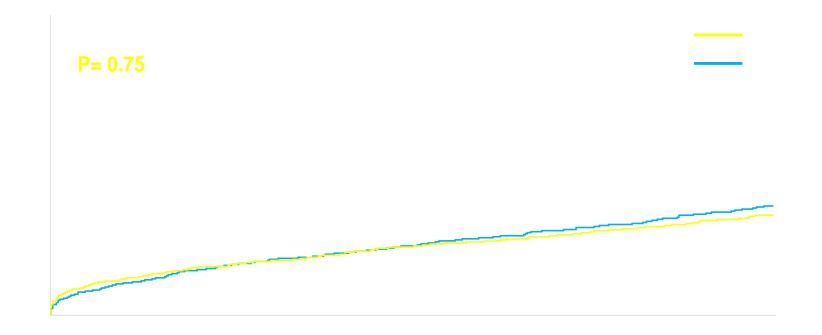
No RCT for Bicuspid aortic stenosis


- Paravalvular leak
- ✓ Durability

 \checkmark

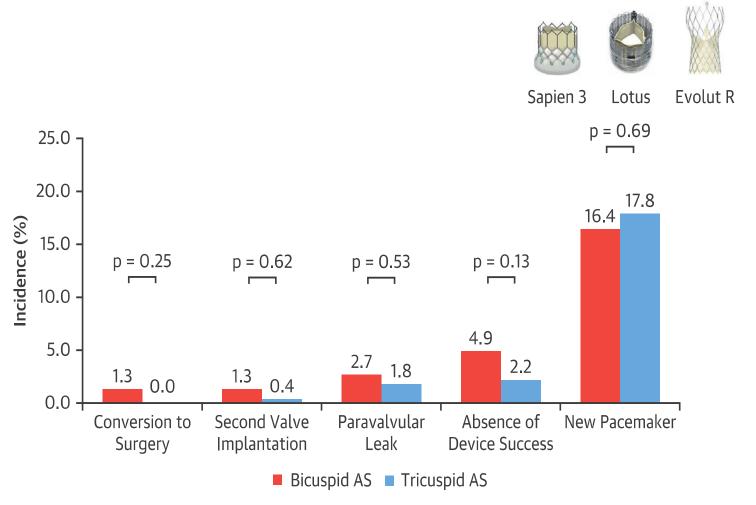
- BICUSPID AORTIC STENOSIS
- ✓ Pacemaker placement
- ✓ Patient confort
- ✓ Cost saving

Bicuspid aortic stenosis




www.icps.com.fr

Roberts et al. Am J Cardiol 2012; 109:1632-6

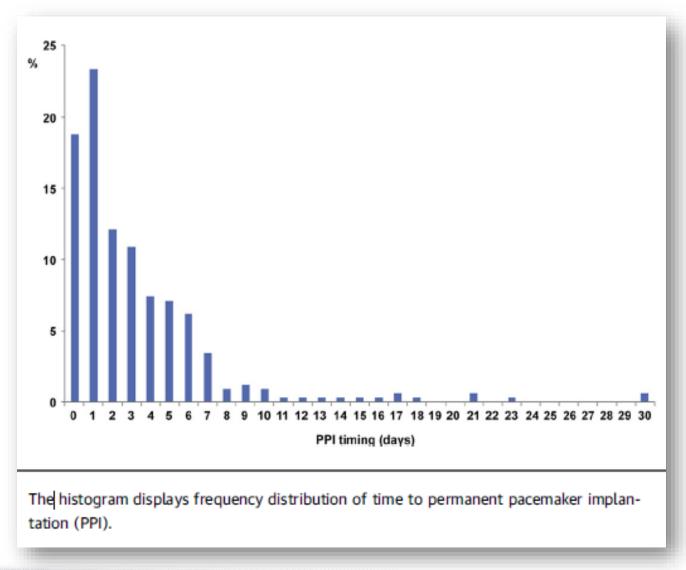

Registre TVT (Sapien 3)

1-Year Mortality or Stroke – Matched

International registry of bicuspid AS

www.icps.com.fr

Yoon et al. JACC 2017; 69:2579-89


PACEMAKER PLACEMENT

	Mort	ortalité AVC		Pace Maker		FA			ΙΑ	
	TAVI	Chir	TAVI	Chir	TAVI	Chir	TAVI	Chir	TAVI	Chir
PARTNER3 1000 pts	1	2.5	1.2	3.1	7.5	5.5	11.6	20.3	0.6	0.5
EV LOW R 1468 pts	2.4	3	0.8	2.4	19.4	7.5	9.8	38.3	4.3	1.5

Mack MJ et al; Partner 3. New Engl J Med; March 2019

Popma J et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. New Engl J Med March 2019

TIMING of IMPLANTATION

Comparison of Incidence, Predictors, and Outcomes of Early Infective Endocarditis after Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in the United States

- Paravalvular leak
- Durability

1 🗸

✓

Chec

- ✓ Bicuspid aortic stenosis
- ✓ Pacemaker placement
 - **PATIENT CONFORT**

Cost saving

Dhaval Kolte, MD, PhD^a, Andrew Goldsweig, MD^b, Kevin F. Kennedy, MS^c, J. Dawn Abbott, MD^a Paul C. Gordon, MD^b, Frank W. Sellke, MD^a, Afshin Ehsan, MD^a, Neel Sodha, MD^a, ✓

2013 to 2014 Nationwide Readmissions Databases to determine the incidence of early IE after TAVI and surgical aortic valve replacement (SAVR) in the US. In 29,306 TAVI and 66,077 SAVR patients

Baseline characteristics and in-hospital complications in patients undergoing TAVI versus SAVR

Variable	Propensity	Propensity Matched			
	TAVI (n = 15,138)	SAVR (n = 15,030)			
Major bleeding	3,858 (25.5%)	6,247 (41.6%)	< 0.001		
Vascular complications	821 (5.4%)	673 (4.5%)	< 0.001		
Sepsis	251 (1.7%)	306 (2.0%)	0.013		
LOS, days*					
Mean \pm SD	8.2 ± 12.6	11.0 ± 14.3	< 0.001		
Median (IQR)	6 (4-9)	8 (6-13)			
Discharge disposition*			< 0.001		
Home (self-care)	5,541 (36.6%)	3,400 (22.6%)			
Short-term hospital	134 (0.9%)	168 (1.1%)			
Skilled nursing facility	3,940 (26.0%)	5327 (35.4%)			
Home health care	5,523 (36.5%)	6,136 (40.8%)			

Am J Cardiol 2018;122:2112-2119

Comparison of Incidence, Predictors, and Outcomes of Early Infective Endocarditis after Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in the United States

1.00 Log-rank P=0.288 0.99 Freedom From IE 0.98 0.97 0.96 0.95 SAVR TAVI 100 150 200 250 50 300 Days No. at Risk SAVR 15,030 13,627 9,375 3,962 2,498 10,776 6,600 TAVR 15,138 13,328 10,106 8,416 5,582 3,084 1,910

Figure 2. Kaplan-Meier curves for freedom from infective endocarditis following TAVI versus SAVR in the propensity-matched cohort. TAVI = transcatheter aortic valve implantation; SAVR = surgical aortic valve replacement.

^b, Kevin F. Kennedy, MS^c, J. Dawn Abbott, MD^a, D^a, Afshin Ehsan, MD^a, Neel Sodha, MD^a, Dert D. Aronow, MD, MPH^{a,*}

In a propensity-matched cohort of 15,138 TAVI and 15,030 SAVR patients (weighted), there were no significant differences in the **incidence rates** of IE **1.7%** [95% CI 1.4% to 2.0%] vs **1.9%** [95% CI 1.6% to 2.2%] per person-year, log-rank p = 0.29) or in the median (interquartile range) **time to IE** (91 [48 to 146] vs 92 [61 to 214] days, p = 0.13).

Am J Cardiol 2018;122:2112-2119

Methods: Baseline data were collected by interview in the hospital after CABG surgery using the Modified Brief Pain Inventory. One to 12 weeks after discharge, weekly telephone interviews were conducted to collect data.

Results: Pain levels and interference with activities of daily living were greatest during hospitalization and decreased over 12 weeks. Pain interfered the most with coughing and sleep. Once opioid medications ran out, activity modification was primarily used to manage pain.

Sample included 80 adults

ELSEVIER

Contents lists available at ScienceDirect

Applied Nursing Research

PPLIED NURSING RESEARC

journal homepage: www.elsevier.com/locate/apnr

Pain intensity, interference and patient pain management strategies the first 12 weeks after coronary artery bypass graft surgery

Table 3

Predominant pain relieving strategies for post-surgical pain.

Week	1	2 n (%)	3 n (%)	4 n (%)	5 n (%)	6 n (%)	7 n (%)	8 n (%)	9 n (%)	10 n (%)	11 n (%)	12 n (%)
	n (%)											
Patients reporting any level of post-surgical	74	54	55	58	32	32	33	20	21	20	16	14
pain from 1 to 10	(93%)	(77%)	(76%)	(78%)	(42%)	(45%)	(46%)	(29%)	(30%)	(29%)	(24%)	(20%)
Pharmacologic pain intervention												
Opioids	67	35	21	20	10	6	7	6	2		3	
Acetaminophen	4	18	19	19	13	11	12	6	6	7	3	3
NSAIDS	2	4	4	2	6	5	4	3	5	6	3	2
Other	6	2	1						1			
Total number patients utilizing pain medication regardless of post-operative pain report	79	59	45	41	29	22	23	15	14	13	9	5
Non-pharmacologic pain intervention												
Activity modification	3	37	25	22	10	18	13	10	9	2	1	1
Pillow for coughing	All	All	5	5	5			1	1			
Heat/cold therapy		2	3	1		1	3	1			1	
Relaxation/distraction			1	1			3	3	1		2	
Topical cream				1		1	2					
Sleep/rest position (recliner	4	4	3	3	2	3	4			1		
Bear it							1	8				

Cost-effectiveness analysis of the SAPIEN 3 TAVI valve compared with surgery in intermediate-risk patients

Gordon Goodall^a, Mark Lamotte^b, Mafalda Ramos^b, Franck Maunoury^c (), Barbora Pejchalova^a and Gerard de Pouvourville^d

^aEdwards Lifesciences S.A., Nyon, Switzerland; ^bIQVIA, Corporate village, Zaventem, Belgium; ^cStatesia, Le Mans, France; ^dESSEC Business School, Cergy Pontoise, France

- Paravalvular leak
- Durability

 \checkmark

✓

- ✓ Bicuspid aortic stenosis
- Pacemaker placement
- ✓ Patient confort
- ✓ COST SAVING

The analysis was performed using a novel Markov model with data derived from the **PARTNER II** randomized controlled trial for survival, clinical event rates, and quality-of-life.

> **Table 5.** Cost, life expectancy, and quality-adjusted life expectancy in intermediate risk patients undergoing TAVI with SAPIEN 3.

	TAVI	sAVR	Difference
Total Lifetime Cost	€34,157	€34,596	_€439
Index Admission	€26661	€23303	+€3358
Rehabilitation	€892	€2574	—€1682
Post-discharge Complications	€3,393	€5,567	—€2174
Management	€3,211	€3,152	+€59
Life expectancy, years	5.87	5.44	0.42
Quality-adjusted life expectancy	4.06	3.65	0.41
€/life-year gained			Dominant
€/QALY gained			Dominant

Abbreviations. TAVI, transcatheter aortic valve implantation; sAVR, surgical aortic valve replacement; QALY, quality-adjusted life year.

European Society doi:10.1093/eurheartj/ehx391 doi:10.1093/eurheartj/ehx391

2017 ESC/EACTS Guidelines for the management of valvular heart disease

The Task Force for the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Authors/Task Force Members: Helmut Baumgartner* (ESC Chairperson)

B) Choice of intervention in symptomatic aortic stenosis				
Aortic valve interventions should only be performed in centres with both departments of cardiology and cardiac surgery on site and with structured collaboration between the two, including a Heart Team (heart valve centres).	I	С		
The choice for intervention must be based on careful individual evaluation of technical suitability and weighing of risks and benefits of each modality (aspects to be considered are listed in <i>Table 7</i>). In addition, the local expertise and outcomes data for the given intervention must be taken into account.	I.	с		
SAVR is recommended in patients at low surgical risk (STS or EuroSCORE II < 4% or logistic EuroSCORE I < 10% ^d and no other risk factors not included in these scores, such as frailty, porcelain aorta, sequelae of chest radiation). ⁹³	I	В		
TAVI is recommended in patients who are not suitable for SAVR as assessed by the Heart Team. ^{91,94}	1	В		
In patients who are at increased surgical risk (STS or EuroSCORE II \geq 4% or logistic EuroSCORE I \geq 10% ^d or other risk factors not included in these scores such as frailty, porcelain aorta, sequelae of chest radiation), the decision between SAVR and TAVI should be made by the Heart Team according to the individual patient characteristics (see <i>Table 7</i>), with TAVI being favoured in elderly patients suitable for transfe- moral access. ^{91,94–102}	I	В		

www.icps.com.fr

O IN

Conclusion

- ✓ 17 years after the case TAVI is a good alternative for patients with intermediate and low risk (very good results)
- ✓ The screening is very important (Angio, CT Scan),
- ✓ Heart team decision
- ✓ Procedure are simplified (« PCI like »).
- ✓ Results of durability of TAVI are good and must be confirmed
- ✓ Results in Bicuspid aortic stenosis are encouraging
- \checkmark It is clearly more confortable for the patient
- $\checkmark\,$ It seems to be cost saving
- ✓ We have now to reduce the rate of pacemaker placement

GRACIAS