

Tratamiento de la enfermedad coronaria antes, durante o después de un TAVI

O Mendiz - MD. FACC. FSCAI

- Director Ejecutivo -

Instituto de Cardiología y Cirugía Cardiovascular (ICyCC)

Departamento de Cardiología Intervencionista

Hospital Universitario Fundación Favaloro

Conflictos de Interés

O Mendiz MD.

Medtronic: Proctor Evolute, Speaker

Edwards: Proctor, speaker

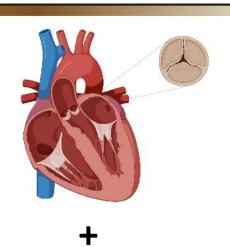
Meril Lifescience: Proctor MyValv, speaker

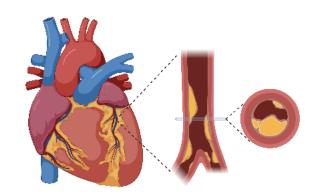
Microport: Proctor VitaFlow

Abbott: Proctor MitraClip

Jotec; Proctor

Oclutech,


Impact of Aortic Stenosis on Coronary Anatomy and Physiology


Reduced coronary perfusion pressure due to reduced stroke volume, systolic and mean arterial pressure

Reversal of normal endocardial-epicardial blood flow ratio at rest

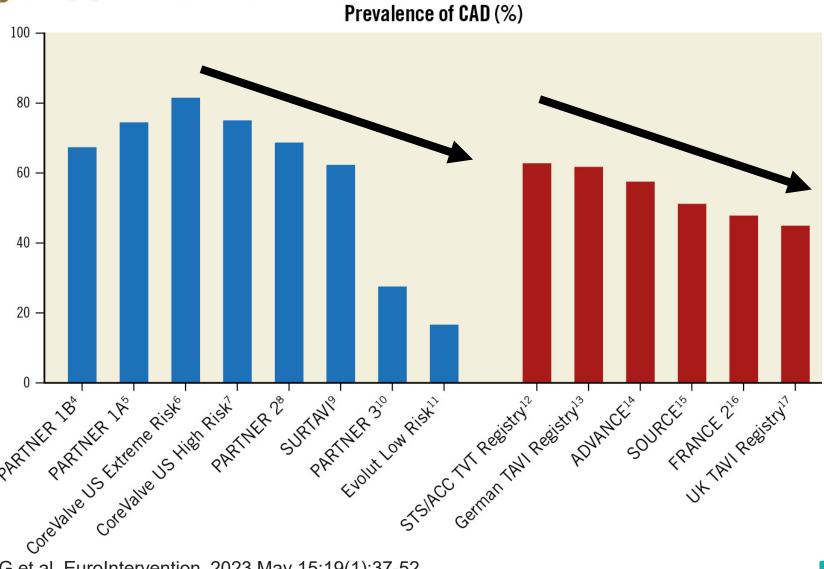
Increased resting diastolic backward expansion wave

Tarantini G et al. EuroIntervention. 2023 May 15;19(1):37-52.

Attenuated and delayed systolic forward compression wave of coronary blood flow

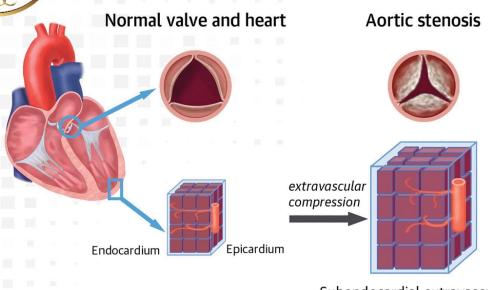
Modified from R Mehran

Upregulation of vasoactive factors, leading to increased resting blood flow


Reduced diastolic coronary perfusion phase

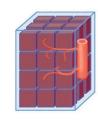
Attenuated coronary flow reserve

Prevalence of CAD in Patients Treated with TAVR



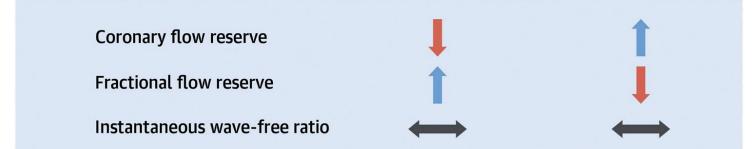
*patients with severe CAD (i.e., SYNTAX score >22, left main CAD) and those with a recent percutaneous coronary intervention (PCI) were excluded

FUNDACIÓN FAVALORO


FAVALORO CARDIOVASCULAR SYMPOSIUM SEPTEMBER 2025

Coronary Revascularization in Patients Undergoing TAVR for Severe Aortic Stenosis

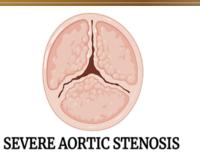
Post-aortic valve replacement

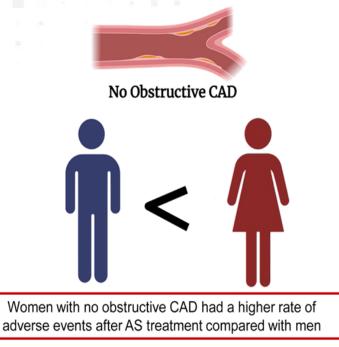


- Regression of hypertrophy
- Reduction in subendocardial extravascular compression
- Improved capillary density

 Myocardial remodeling changes related to AS and reverse remodeling related to Aortic Valve Replacement

- Subendocardial extravascular compression
- Left ventricular hypertrophy
- Capillary rarefaction
- · Increased diffusion distance
- Resting coronary vasodilatation





Impact of Coronary Artery Disease on Cardiovascular Outcomes Differs Between Men and Women With Severe Aortic Stenosis

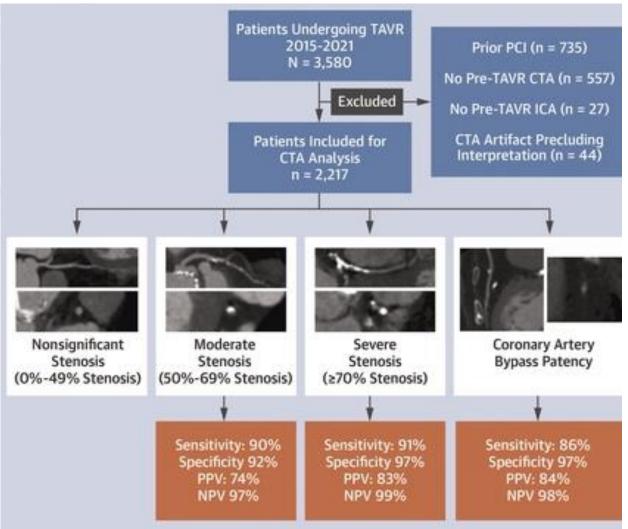
Patients with severe AS in the PARTNER 1, 2, and 3 trials and registries were stratified by obstructive CAD (coronary stenosis ≥50%, prior myocardial infarction, or revascularization) or no obstructive CAD (all stenoses <50%)

Obstructive CAD was associated with a higher risk of long-term adverse events after treatment for severe AS, but there was a significant sex disparity in clinical outcomes among men and women with no obstructive CAD

Men and women with obstructive CAD had a similar rate of adverse events after AS treatment

Brown K, et al. Circ Cardiovasc Interv. 2025;18:e014999

Outcome of patients undergoing TAVR with concomitant CAD


Study or Subgroup	log[Odds ratio]	SE	Weight	Odds ratio IV, Random, 95% Cl		ratio m, 95% Cl
Dewey et al, 2010	3.0106	1.1111	4.9%	20.30 [2.30, 179.17]		
Franzone et al, 2017	-0.3147	0.27	24.4%	0.73 (0.43, 1.24]		_
Mancio et al, 2015	0.9555	0.4389	17.3%	2.60 [1.10, 6.15]		
Snow et al, 2015	0.1655	0.1053	30.9%	1.18 (0.96, 1.45]		-
Ussia et al, 2013	-0.3011	0.3139	22.4%	0.74 (0.40, 1.37]		_
Total (95% CI)			100.0%	1.25 [0.74, 2.11]	-	•
Heterogeneity: Tau ² =0.22; C Test for overall effect: Z=0.8		05); I²=73%			0.05 0.2 AS without CAD	AS with CAD

However, <u>CAD complexity</u> seems to matter - SYNTAX Score >22 showed higher one-year mortality

Study or Subgroup	log[Odds ratio]	SE	Weight	Odds ratio IV, Fixed, 95% CI	Odds ratio IV, Fixed, 95% Cl
Shamekhi et al, 2017	0.4055	0.2606	40.3%	1.50 [0.90, 2.50]	
Stefanini et al, 2014	0.5188	0.2963	31.1%	1.68 [0.94, 3.00]	
Witberg et al, 2017	0.7372	0.3093	28.6%	2.09 [1.14, 3.83]	
Total (95% CI)			100.0%	1.71 [1.24, 2.36]	•
Heterogeneity: Chi ² =0.6	68, df=2 (p =0.71); l^2 =	0%		0	0.01 0.1 1 10 100
Test for overall effect: Z	=3.24 (p=0.001)				Favours [SS>22] Favours [SS<22]
	,	514		otomication 2019 Dec 7	- RASA

Effectiveness of Pre-TAVR CTA as a Screening Tool for Significant CAD Before TAVR

- 2217 Ptes undergoing TAVR at Cleveland Clinic with a preprocedural CTA and invasive coronary angiography (ICA), and no prior percutaneous intervention, were identified from 2015 to 2021.
- CTA is an effective screening tool for significant proximal CAD prior to TAVR and could have spared 51.8% of patients invasive testing prior to procedure.
- Pre-TAVR CTA has a high NPV for high-grade proximal stenosis of each coronary artery. As a result, CTA can be used as a screening tool to rule out significant proximal CAD in patients undergoing TAVR

Feasibility of TAVR-CTA for Evaluating Obstructive Coronary Artery Disease Before TAVR

Conclusions: TAVR-CTA, used as a gatekeeper for invasive coronary angiography (ICA) before TAVR resulted in a similar 1-year revascularization rate compared to routine ICA, allowing ICA to be skipped in 53% of cases

Revascularization Had no Obstructive 53% **POPULATION** Rate Within 1 Year CAD by TAVR-CTA After TAVR is low **TAVR-CTA Evaluation Invasive Angiography** & Selected Referral 0.8% was skipped for Angiography p=0.158**Factors Associated with the Need** for Invasive Angiography (p<0.001) **Routine Invasive** 1.8% **Prior Coronary Stent Angiography High Coronary Calcium Score**

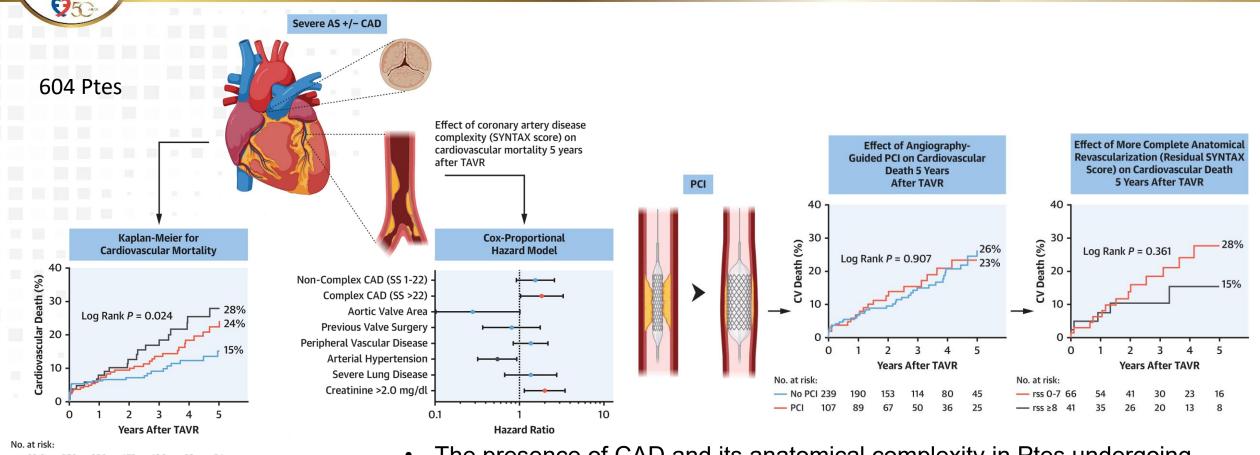
Phichaphop A, et al. Circ Cardiovasc Interv. 2025; 18:e0015181.

2025 ESC Valvular Guidelines: CAD and AS

2021 ESC Guidelines

2025 ESC Guidelines

Recommendations in 2021 version	Class	Level	Recommendations in 2025 version	Class	Level
Management of coronary artery disease	in pati	ents w	ith valvular heart disease		
CCTA should be considered as an alternative to coronary angiography before valve surgery in patients with severe VHD and low probability of CAD.	lla	С	CCTA is recommended before valve intervention in patients with moderate or lower (≤50%) pre-test likelihood of obstructive CAD.	1	В
Coronary angiography is recommended before valve surgery in patients with severe VHD and any of the following: • History of cardiovascular disease • Suspected myocardial ischaemia • LV systolic dysfunction • In men >40 years of age and postmenopausal women • One or more cardiovascular risk factors.	1	С	Invasive coronary angiography is recommended before valve intervention in patients with high and very high (>50%) pre-test likelihood of obstructive CAD.	1	C



2025 ESC Valvular Guidelines: CAD and AS

Recommendations	Class	Level
Diagnosis of coronary artery disease		
Omission of invasive coronary angiography should be considered in TAVI candidates, if procedural planning CCTA is of sufficient quality to rule out significant CAD.	lla	В
PCI should be considered in patients with a primary indication to undergo TAVI and ≥90% coronary artery stenosis in segments with a reference diameter ≥2.5 mm.	lla	В

The Effect of Coronary Lesion Complexity and Preprocedural Revascularization on 5-Year Outcomes After TAVR

- The presence of CAD and its anatomical complexity in Ptes undergoing TAVR are associated with significantly worse 5-year outcomes.
- However, angiography-guided PCI did not improve outcomes, highlighting the need for further research into physiology-guided PCI.

Lennert Minten et al. J Am Coll Cardiol Intv 2022; 15:1611-1620.

dvantages and disadvantages of different PCI timing in patients undergoing TAVI.

	PCI before TAVI	PCI after TAVI	Combined PCI and TAVI
Advantages	Easier coronary access (especially for self-expanding THV with a supra-annular leaflet position) Lower risk of ischaemia-induced haemodynamic instability (i.e., during rapid pacing) Reduced contrast use compared with concomitant PCI and TAVI	More reliable FFR/iFR of intermediate lesions Lower risk of haemodynamic instability during complex PCI (i.e., with rotational atherectomy and impaired LV function) Reduced contrast use compared with concomitant PCI and TAVI	- Use of the same arterial access - Lower cost
Disadvantages	Less reliable FFR/iFR assessments of borderline lesions Higher risk of haemodynamic instability due to AS	More challenging and potentially compromised coronary access Less stability and support of the coronary guiding catheter Potential THV dislodgement	Larger amount of contrast and higher risk of AKI Prolonged procedure Need for DAPT at the time of TAVI, hence increased bleeding risk

AS: aortic stenosis; AKI: acute kidney injury; DAPT: dual antiplatelet therapy; FFR: fractional flow reserve; iFR: instantaneous wave-free ratio; LV: left ventricular; PCI: percutaneous coronary intervention; TAVI: transcatheter aortic valve implantation; THV: transcatheter heart valve

PCI before TAVR

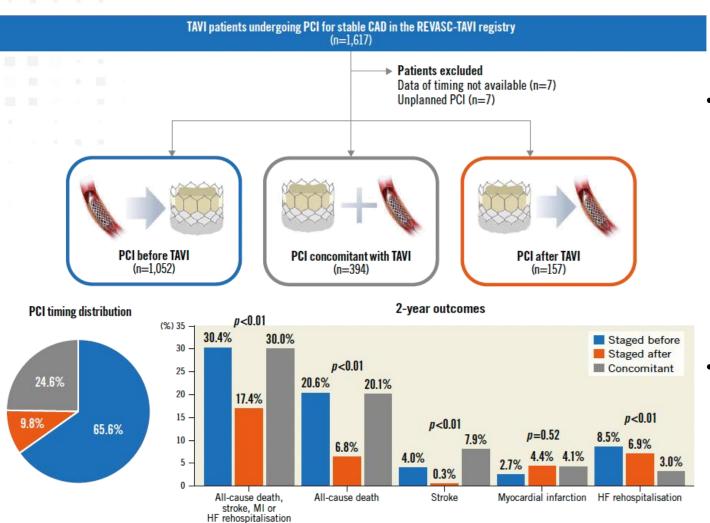
1) >70% proximal (LAD - FRANCE 2)

2) ACS

3) Angina

4) >90% lesions

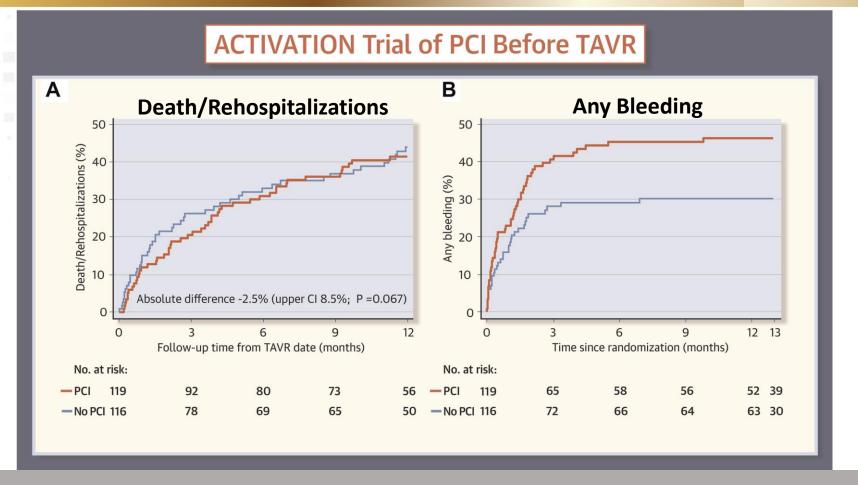
PCI after TAVR


THV choice and implantation technique should be aimed at preserving coronary access

Outcomes of patients undergoing TAVI and PCI for stable coronary artery disease from the international, multicentre REVASC-TAVI REGISTRY.

- 66% of patients underwent PCI before TAVR
- 25% underwent
 PCI concomitant
 with TAVR

- Conclusions: In patients with severe AS and stable coronary artery disease scheduled for TAVI, performance of PCI after TAVI seems to be associated with improved 2-year clinical outcomes compared with other revascularisation timing strategies.
- These results need to be confirmed in randomised clinical trials

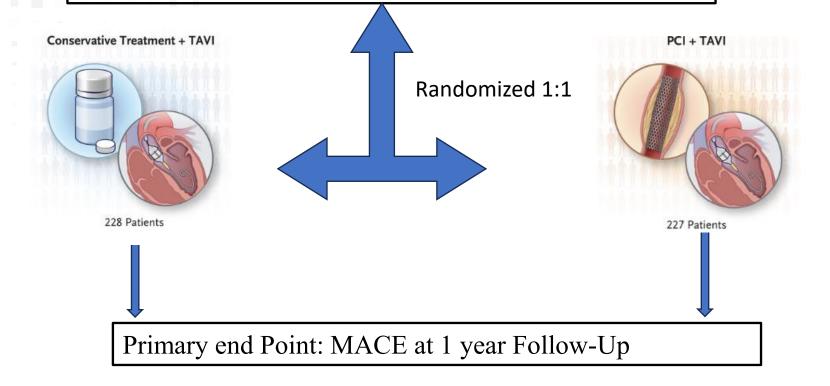

CAD: coronary artery disease; HF: heart failure; MI: myocardial infarction; PCI: percutaneous coronary intervention; TAVI: transcatheter aortic valve implantation

ACTIVATION (PercutAneous Coronary inTervention prIor to transcatheter aortic VAlve implantaTION): A Randomized Clinical Trial

Patients (n=235) with severe symptomatic AS and significant CAD with Canadian Cardiovascular Society class ≤2 angina were randomly assigned to receive PCI or no PCI prior to TAVR at 17 centers

Conclusions

Observed rates of death and rehospitalization at 1 year were similar between PCI and no PCI prior to TAVR; however, the noninferiority margin was not met, and PCI resulted in a higher incidence of bleeding

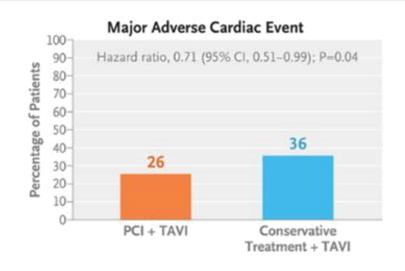

PCI in Ptes undergoing TAVI; NOTION 3 Trial

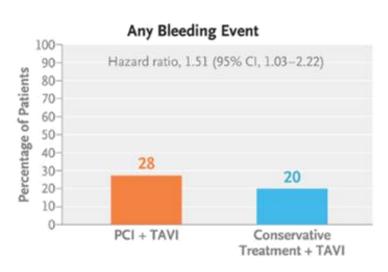
ORIGINAL ARTICLE

PCI in Patients Undergoing Transcatheter Aortic-Valve Implantation

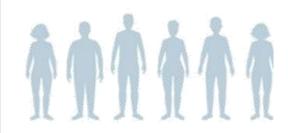
Severe AS undergoing TAVI and CAD with at least one A. Ergl coronary-artery stenosis with a fractional flow reserve of 0.80 or less or a diameter stenosis of at least 90%

J. Lønbo g, R. Jabbari, M. Sabbah, K.T. Veien, M. Niemelä, P. Freeman, R. Linder, D. Ioanes, C.J. Terkelsen, O.A. Kajander, S. Koul, M. Savontaus, P. Karjalainen, A. Erglis M. Minkkinen, R. Sørensen, H.-H. Tilsted, L. Holmvang, G. Bieliauskas, J. Elert, J. Piuhola, A. Eftekhari, O. Angerås, A. Rück, E.H. Christiansen, T. Jørgensen, B.T. Özbek, C. Glinge, L. Søndergaard, O. De Backer, and T. Engstrøm, for the NOTION-3 Study Group*




PCI in Ptes undergoing TAVI; NOTION 3 Trial

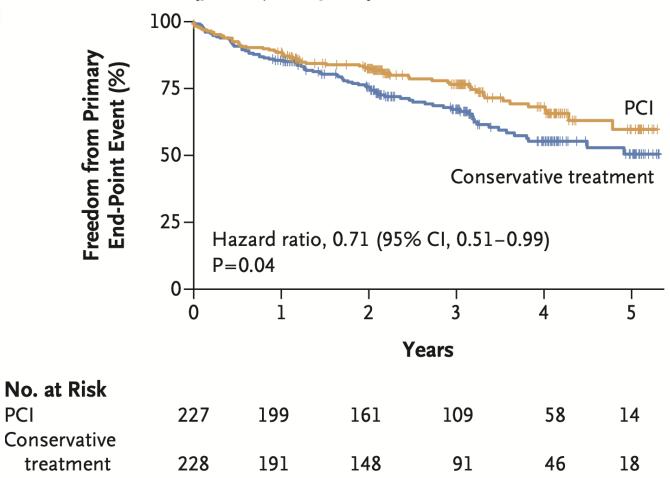
RESULTS


At a median followup of 2 years, a major adverse cardiac event had occurred in significantly fewer patients in the PCI group than in the conservative-treatment group.

Bleeding events occurred more often in the PCI group than in the conservative-treatment group.

COMPLICATIONS RELATED TO PCI

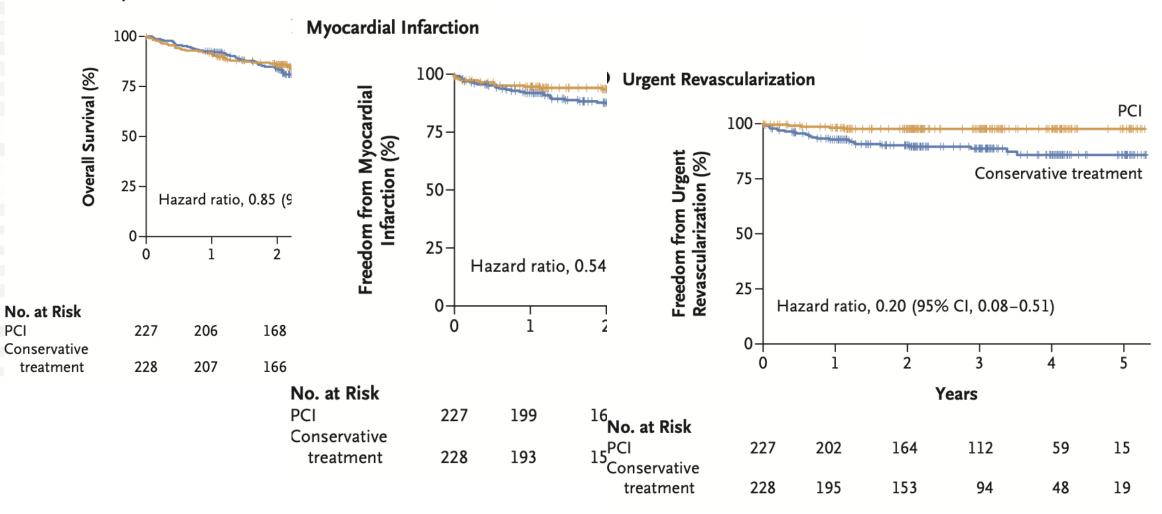
In the PCI group, 7 patients (3% had a complication related to the PCI procedure.



PCI in Ptes undergoing TAVI; **NOTION 3 Trial**

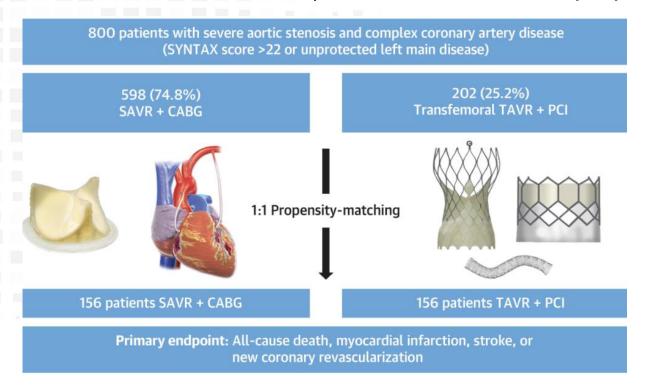
Death from Any Cause, Myocardial Infarction, or Urgent Revascularization (primary end point)

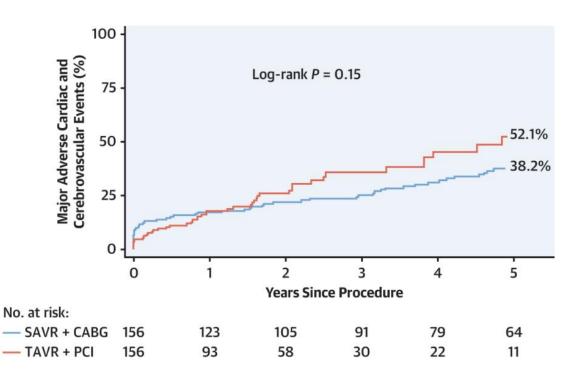
Primary Outcome



PCI

NOTION 3 Trial – Secondary Outcomes





Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Complex Coronary Artery Disease

800 patients (598 undergoing SAVR + CABG and 202 undergoing transfemoral TAVR + PCI) were included. A 1:1 propensity-matched analysis was performed

In Ptess with severe AS and complex CAD, TAVR + PCI and SAVR + CABG were associated with similar rates of MACCE after a median follow-up period of 3 years, but TAVR + PCI recipients exhibited a higher risk for repeat coronary revascularization

THE LANCET

TransCatheter aortic valve implantation and fractional flow reserve-guided percutaneous coronary intervention versus conventional surgical aortic valve replacement and coronary bypass grafting for treatment of patients with aortic valve stenosis and complex or multivessel coronary disease (TCW): an international, multicentre, prospective, open-label, non-inferiority, randomised controlled trial

Elvin Kedhi, Renicus S Hermanides, Jan-Henk E Dambrink, Sandeep K Singh, Jurriën M Ten Berg, DirkJan van Ginkel, Martin Hudec, Giovanni Amoroso, Ignacio J Amat-Santos, Martin Andreas, Rui Campante Teles, Guillaume Bonnet, Eric Van Belle, Lenard Conradi, Leen van Garsse, Wojtek Wojakowski, Vassilis Voudris, Jerzy Sacha, Pavel Cervinka, Erik Lipsic, Samer Somi, Luis Nombela-Franco, Sonja Postma, Kerstin Piayda, Giuseppe De Luca, Evelien Kolkman, Krzysztof P Malinowski, Thomas Modine, on behalf of the TCW study group*

PATIENTS HAD COMPLEX CAD!!

TCW Trial Design

Coronary Disease:

• ≥ 2 de novo coronary lesions of DS ≥ 50% located in any of native coronary arteries ≥ 2 mm

McGill [52] McGill University of silesia

single LAD lesion ≥20 mm length or involving a bifurcation

Patients **≥70 years**with <u>severe AS and ≥2VD or complex LAD</u>
Heart Team discussion

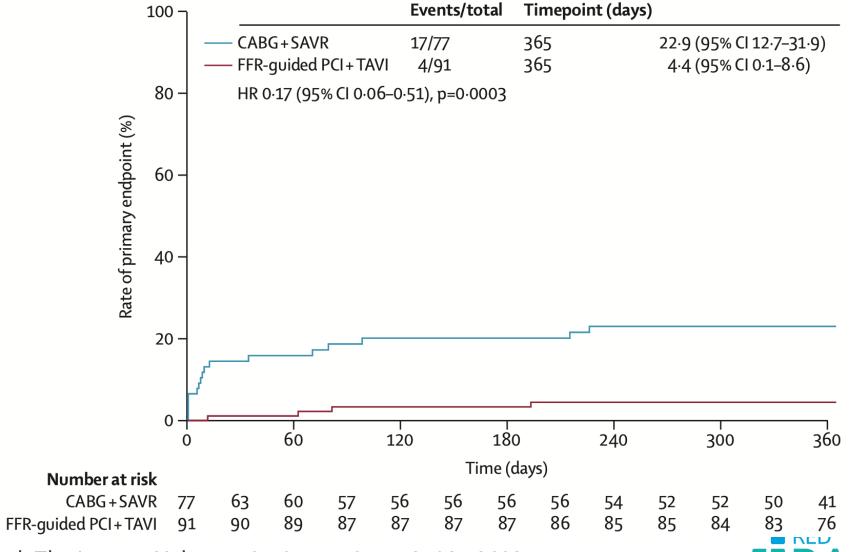
Primary endpoint: A composite of all-cause mortality, myocardial infarction, disabling

Experimental arm (n=164):
FFR-guided PCI & TAVI
PCI for all lesions FFR≤0.80

Evaluation of angina symptoms:
Patients with persisting angina with known FFR ≤ 0.85 can undergo PCI if FFR ≤ 0.80 at FU

Experimental arm (n=164):
CABG & SAVR

1:1


Comparative arm (n=164):
CABG & SAVR

Follow up stroke, unscheduled clinically-driven target vessel revascularization, valve re-intervention, and life threatening or disabling bleeding

Trial prematurely halted by the DSMB (after 50% enrolment) due to significant difference between the two treatment arms.

Primary Endpoint: Composite of all-cause mortality, MI, stroke, TVR, valve reintervention, and life-threatening bleeding.

Kedhi, Elvin et al. The Lancet, Volume 404, Issue 10471, 2593 - 2602

TCW Trial: Secondary Outcomes at 1 Year

FAVALORO					
	FFR-Guided PCI + TAVI (n= 91)	SAVR+CABG (n= 77)	HR (95% CI)	P value	
Death – all cause	0 (0)	7 (9.74)		0.002	
Death - cardiovascular	0 (0)	6 (8.35)		0.005	
All Stroke and TIA	1 (1.11)	3 (4.20)	0.25 (0.03-2.45)	0.20	
Disabling stroke	1 (1.11)	2 (2.85)	0.38 (0.03-4.19)	0.41	
Non-disabling stroke	0 (0)	0 (0)			
TIA	0 (0)	1 (1.35)		0.27	
Myocardial infarction (any)	2 (2.21)	1 (1.30)	1.58 (0.14-17.48)	0.71	
Periprocedural myocardial infarction	1 (1.10)	1 (1.30)	0.82 (0.05-13.18)	0.89	
Spontaneous myocardial infarction	1 (1.11)	0 (0)		0.40	

	FFR-Guided PCI + TAVI (n= 91)	SAVR +CABG (n= 77)	HR (95% CI)	P value
Any revascularization	0 (0)	1 (1.30)		0.28
CD-TVR	0 (0)	1 (1.30)		0.28
Valve reintervention	0 (0)	1 (1.30)		0.28
Life threatening or disabling bleeding (VARC-2)	2 (2.21)	9 (12.10)	0.17 (0.04-0.80)	0.01
Major bleeding (VARC-2)	5 (5.56)	7 (9.21)	0.57 (0.18-1.79)	0.32
Minor bleeding (VARC-2)	12 (13.27)	4 (5.40)	2.52 (0.81-7.81)	0.10
Permanent pacemaker implantation	9 (9.89)	2 (2.87)	3.74 (0.81-17.30)	0.07
Major Vascular Complication	4 (4.40)	1 (1.35)	3.36 (0.38-30.09)	0.25
Re-thoracotomy	0 (0)	4 (5.19)		0.02
Atrial Fibrillation	2 (2.20)	11 (13.05)	0.28 (0.09-0.88)	0.03

The TCW trial showed that FFR-guided PCI & TAVI as compared to CABG & SAVR was associated with significantly lower primary endpoint and mortality rates.

What Do the Guidelines Tell Us?

2025 ESC/EACTS Guidelines for the management of valvular heart disease

Recommendations

Invasive coronary angiography is recommended in the evaluation of CAD in patients with severe ventricular SMR.

PCI may be considered in patients with a primary indication to undergo transcatheter valve interventions and coronary artery stenosis ≥70% in proximal segments of main vessels.

Downgraded from IIa (2021 Guidelines)

2020 ACC/AHA Guideline for the Management of

,	Valvul	ar Heart Disease	******
COR	R LOE Recommendations		

COR	LOE	Recommendations
1	C-EO	 In patients undergoing TAVI, 1) contrast- enhanced coronary CT angiography (in patients with a low pretest probability for CAD) or 2) an invasive coronary angiogram is recommended to assess coronary anatomy and guide revascularization.
2a	C-LD	In patients undergoing TAVI with significant left main or proximal CAD with or without angina, revascularization by PCI before TAVI is reasonable. 1,2
2 a	C-LD	3. In patients with significant AS and significant CAD (luminal reduction >70% diameter, fractional flow reserve <0.8, instantaneous wave-free ratio <0.89) consisting of complex bifurcation left main and/or multivessel CAD with a SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) score >33, SAVR and CABG are reasonable and preferred over TAVI and PCI.3,4

Ongoing trials will impact future guidelines!

Ongoing Trials

COMPLETE TAVR Trial: Study Completion Expected in 2026!

SYMPTOMATIC AS PATIENTS with at least 1 coronary artery lesion in a native segment that is \geq 2.5 mm in diameter with a \geq 70% visual angiographic* stenosis AND Heart Team Consensus they are suitable for transfermoral TAVR and would receive a bypass if they were undergoing elective SAVR

*CT, Echo, Hemodynamic, and Angiographic Core Labs

SUCCESSFUL TF TAVR WITH A BALLOON EXPANDABLE THV STANDARDIZED INVASIVE HEMODYNAMICS (SIH) WITH ON-TABLE TTE

RANDOMIZATION within 96 hours and Stratified for Intended Timing of PCI and Requirement for OAC:

COMPLETE REVASCULARIZATION

Staged PCI of all lesions (1-45 days post TAVR)Goal of complete revascularization of all qualifying lesions N=2000

MEDICAL THERAPY

Guideline-directed medical therapy alone No revascularization N=2000

Antithrombotic Therapy

DAPT for 1-6 months (ASA + clopidogrel preferred), then SAPT lifelong (ASA preferred) SAPT lifelong (ASA preferred)

If Requirement for OAC (usually AF)

Guideline-directed DOAC † + SAPT for 1-6 months then guideline-directed DOAC therapy alone lifelong Guideline-directed DOAC therapy † lifelong

See supplementary antithrombotic guidance document

MEDIAN FOLLOW-UP: 3.5 YEARS

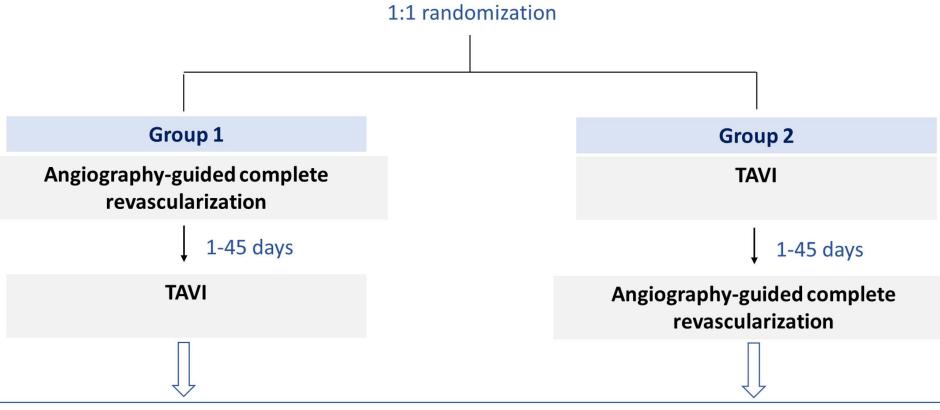
(REPEAT SIH WITH ON-TABLE TTE IF ≥ MODERATE VARC-3 HEMODYNAMIC VALVE DETERIORATION OR MG ≥ 20 MMHg on any Follow-Up TTE > 1 Month Post TAVR

PRIMARY OUTCOME: Composite of CV Death, New MI, Ischemia-Driven Revascularization, or Hospitalization for Unstable Angina or for Heart Failure

KEY SECONDARY OUTCOMES: CV death or new MI, transacrtic gradient post TAVR (echocardiographically-derived vs. direct invasive measurement)

SECONDARY OUTCOMES: Hemodynamic variables obtained with SIH and TTE, Each component of the primary outcome, Angina Status, All-cause Mortality,

Stroke, Cost-effectiveness, QOL, Bleeding, Contrast Associated Acute Kidney Injury, Fluoroscopic Time/Contrast Utilization for Staged PCI

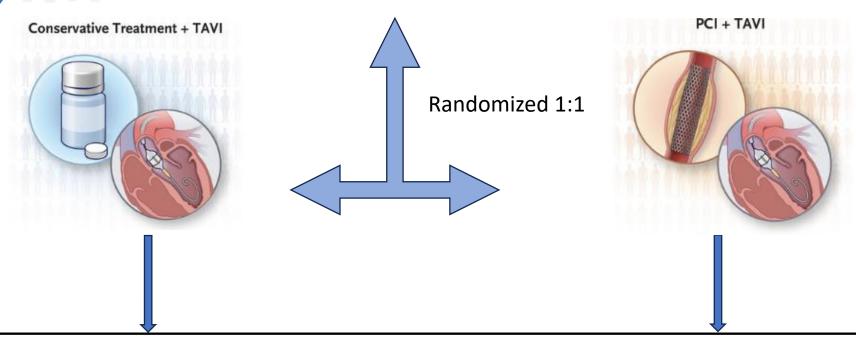


PCI Before Vs. After TAVI: TAVI PCI Trial

Patients with severe aortic stenosis and concomitant coronary artery disease scheduled for TAVI and PCI based on a multidisciplinary Heart Team decision

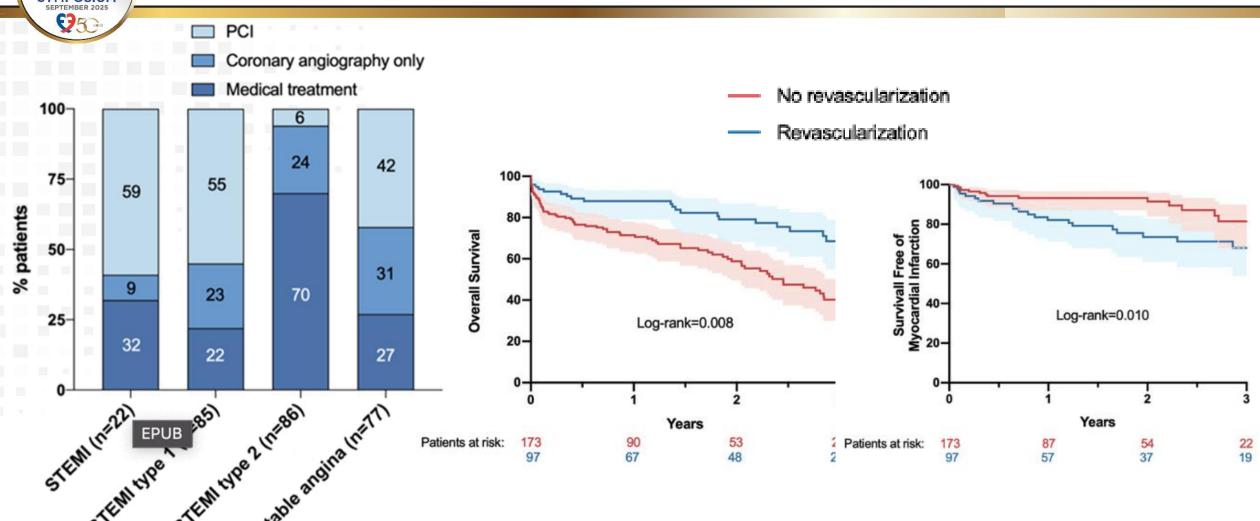
Ongoing

Primary endpoint: all-cause death, non-fatal myocardial infarction, ischemia-driven revascularization, rehospitalization, and life-threatening/disabling or major bleeding at 1 year

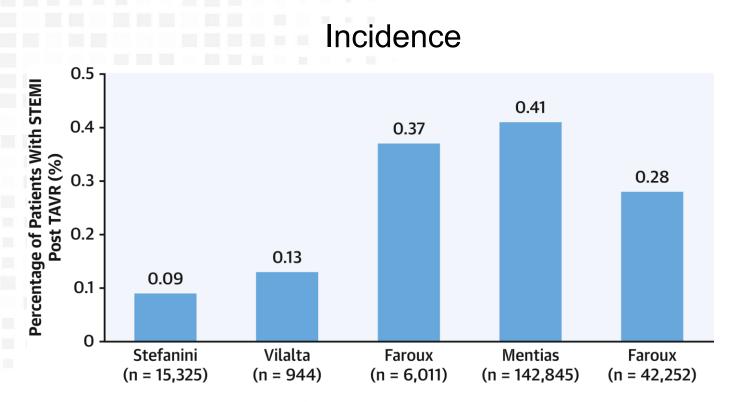


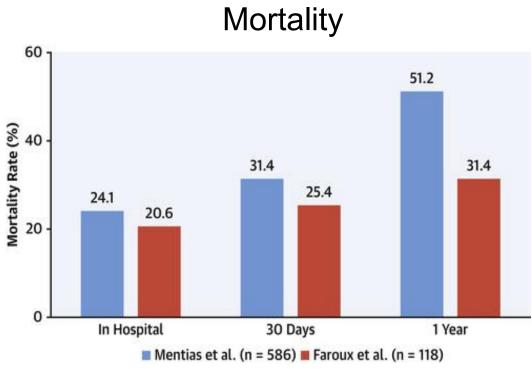
Deferral of routine percutaneous coronaryintervention in patients undergoing TAVI: Rationale and design of the PRO-TAVI trial

A total of 466 Ptes undergoing TAVI will be randomized in a 1:1 ratio to PCI or no PCI. Concomitant CAD is defined as at least 1 stenosis of 70% to 99%, or at least 1 stenosis between 40% and 70% combined with positive physiological measurement in a coronary artery with a minimal diameter of 2.5 mm or bypass graft.

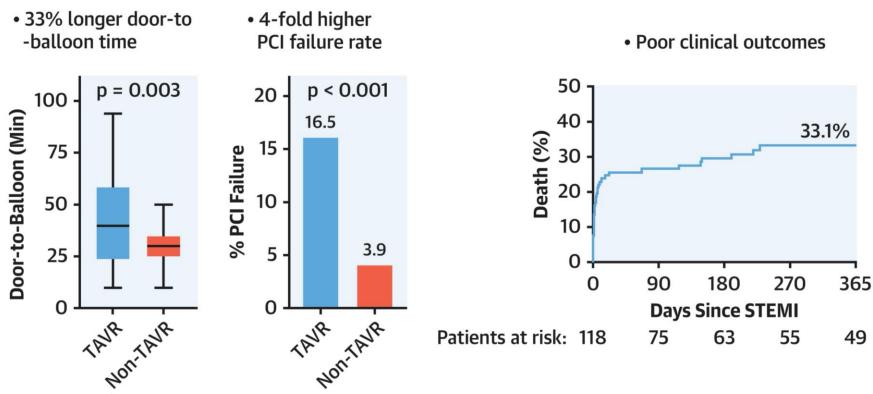

Ongoing

The primary endpoint: MACEor type 2 - 4 bleeding at 12 months after randomization, in accordance with VARC3 criteria. Secondary endpoints include the individual components of the primary endpoint, revascularization, quality of life and cost-effectiveness

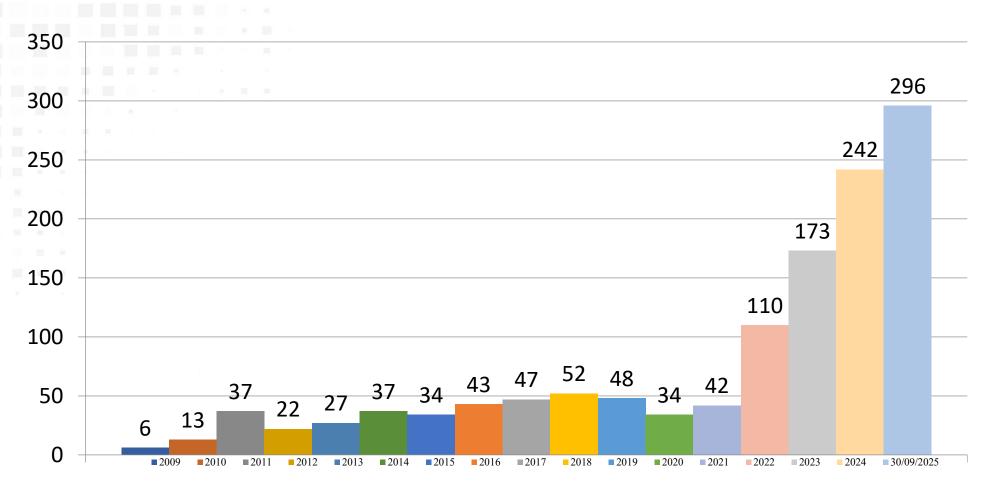



Acute Coronary Syndrome Following TAVR

STEMI Following TAVR



ST-Segment Elevation Myocardial Infarction Following Transcatheter Aortic Valve Replacement



STEMI after TAVR was associated with very **high in-hospital and mid-term mortality**. Longer door-to-balloon times and a higher PCI failure rate were observed in TAVR patients, partially due to coronary access issues specific to the TAVR population, and this was associated with poorer outcomes

TAVI program at Favaloro

TAVI + PCI at Favaloro

	ATC + TAVI n=237 (%)	TAVI n=710 (%)	
Hombres	140 (59,1)	317 (44,6)	<0,001
Edad	79 <u>+</u> 3,4	79,8±4,7	
STS (mortalidad)	6,85±2,4	4,6±1,9	
FEVI	56,1±9,9	54,8±11,2	
Resultados 30 Días			
Muerte	6 (2,5)	6 (0,8)	0,044
IAM	-		
Stroke >	2 (0.8)	1 (0,1)	0,09
Stroke <	5 (2,1)	2 (0,3)	0,004
PPMI	27 (11.3)	42 (5,9)	0,004
Sangrado Mayor	3 (3,1)	2 (0,3)	0,07
Complic. Vasc.	18 (7,6)	20(2,81)	0,001

Highlights:

- The coexistence of epicardial CAD among patients with AS is common.
- Diagnostic and treatment alternatives remain ambiguous and highly debated.
- Physiological changes of AS on hemodynamic status challenge assessment of concomitant CAD.
- Studies evaluating the efficacy of revascularization in patients with AS are needed.

Conclusiones:

- La indicación de revascularización en Ptes q van a recibir TAVI depende de los síntomas, severidad de las lesiones, monto isquémico, riesgo del procedimiento y expectativa de vida.
- Evidencias recientes sugieren q la revasc. de vasos mayores se asocial a una reducción del riesgo de IAM y revasc. de urgencia.
- El momento y la estrategia son aún motivo de debate.
- TAVI debe ser realizado alineando las comisuras para disminuir la dificultad posterior de cateterizar las coronarias
- En los SCA post TAVI debemos tomas las conductas habituales

